Introduction to Cryptography Lecture 4

Message authentication Hash functions

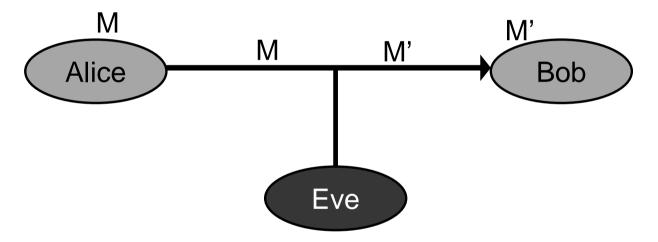
Benny Pinkas

November 20, 2005

Introduction to Cryptography, Benny Pinkas

Data Integrity, Message Authentication

 Risk: an active adversary might change messages exchanged between Alice and Bob



• Authentication is orthogonal to secrecy. A relevant challenge regardless of whether encryption is applied.

November 20, 2005

Introduction to Cryptography, Benny Pinkas

One Time Pad

- OTP is a perfect cipher, yet provides no authentication
 - Plaintext x₁x₂...x_n
 - Key k_{1k2}...k_n
 - Ciphertext $c_1=x_1\oplus k_1$, $c_2=x_2\oplus k_2,...,c_n=x_n\oplus k_n$
- Adversary changes, e.g., c₂ to 1⊕c₂
- User decrypts 1⊕x₂
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)

November 20, 2005

Introduction to Cryptography, Benny Pinkas

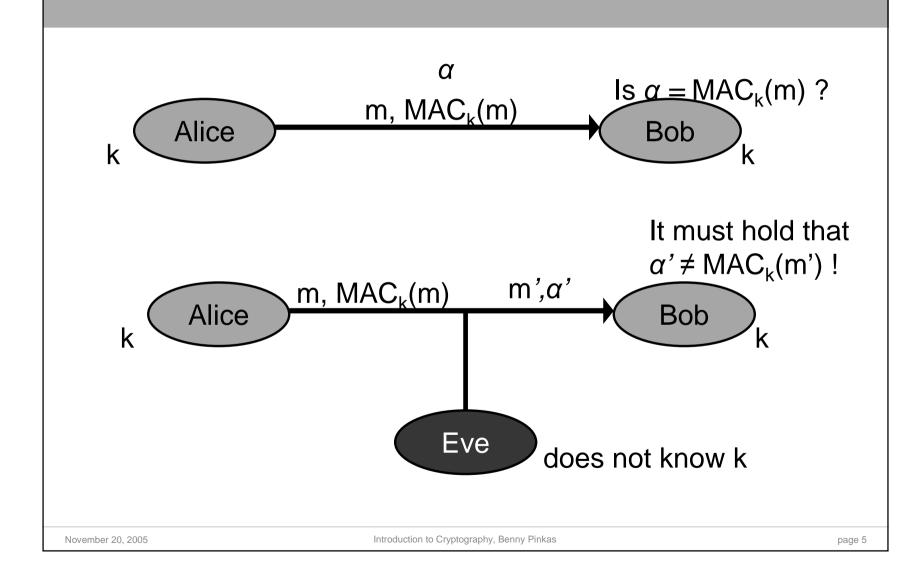
Definitions

- Scenario: Alice and Bob share a secret key K.
- Authentication algorithm:
 - Compute a Message Authentication Code: $\alpha = MAC_{\kappa}(m)$.
 - Send m and α
- Verification algorithm: $V_{\kappa}(m, \alpha)$.
 - $-V_{\kappa}(m, MAC_{\kappa}(m)) = accept.$
 - For $\alpha \neq MAC_{\kappa}(m)$, $V_{\kappa}(m, \alpha) = reject$.
- How does $V_k(m)$ work?
 - Receiver knows k. Receives m and α .
 - Receiver uses k to compute $MAC_{K}(m)$.
 - $-V_{\kappa}(m, \alpha) = 1$ iff $MAC_{\kappa}(m) = \alpha$.

November 20, 2005

Introduction to Cryptography, Benny Pinkas

Common Usage of MACs for message authentication



Requirements

- Security: The adversary,
 - Knows the MAC algorithm (but not K).
 - Is given many pairs $(m_i, MAC_K(m_i))$, where the m_i values might also be chosen by the adversary (chosen plaintext).
 - Cannot compute $(m, MAC_{\kappa}(m))$ for any new m ($\forall i \ m \neq m_i$).
 - The adversary must not be able to compute $MAC_K(m)$ even for a message m which is "meaningless" (since we don't know the context of the attack).
- Efficiency: output must be of fixed length, and as short as possible.
 - \Rightarrow The MAC function is not 1-to-1.
 - $-\Rightarrow$ An n bit MAC can be broken with prob. of at least 2⁻ⁿ.

November 20, 2005

Introduction to Cryptography, Benny Pinkas

Constructing MACs

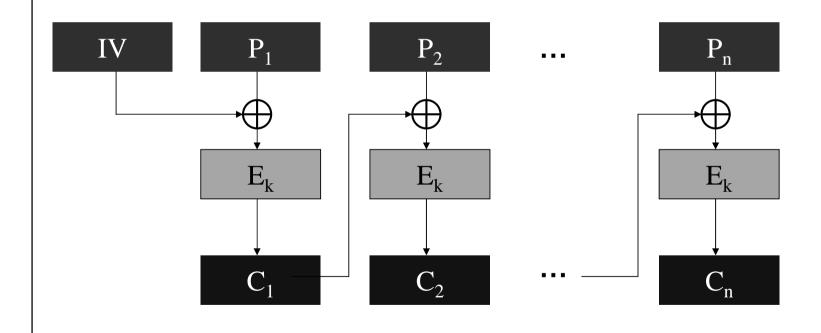
- Based on block ciphers (CBC-MAC) or,
- Based on hash functions
 - More efficient
 - At the time, encryption technology was controlled (export restricted) and it was preferable to use other means when possible.

November 20, 2005

Introduction to Cryptography, Benny Pinkas

CBC

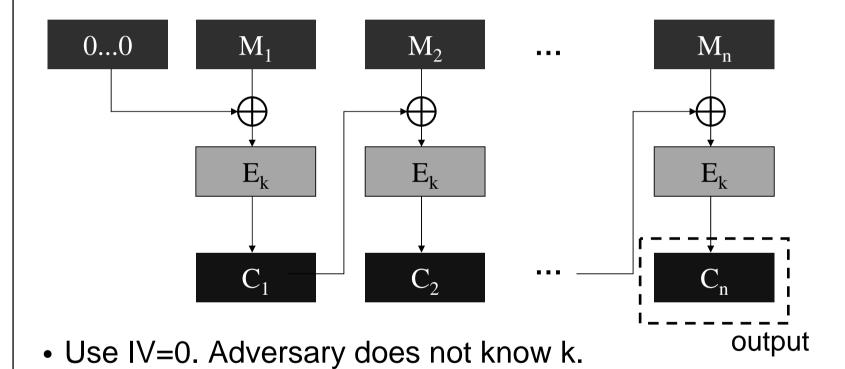
- Reminder: CBC encryption
- Plaintext block is xored with previous ciphertext block



November 20, 2005

Introduction to Cryptography, Benny Pinkas

CBC MAC



November 20, 2005

Introduction to Cryptography, Benny Pinkas

• Encrypt M in CBC mode, using the MAC key. Discard

 $C_1,...,C_{n-1}$ and define $MAC_K(M_1,...,M_n)=C_n$.

Security of CBC-MAC

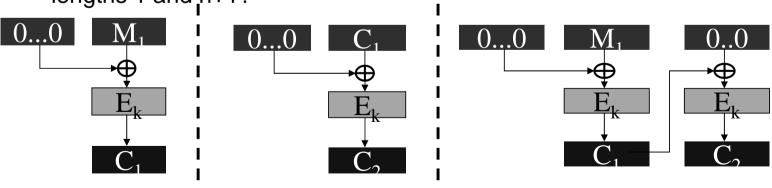
- Claim: if E_K is pseudo-random then CBC-MAC, applied to fixed length messages, is a pseudo-random function, and is therefore resilient to forgery.
- But, insecure if variable lengths messages are allowed

November 20, 2005

Introduction to Cryptography, Benny Pinkas

Security of CBC-MAC

- Insecurity of CBC-MAC when applied to messages of variable length:
 - Get C_1 = CBC-MAC_K(M_1) = E_K (0 ⊕ M_1)
 - Ask for MAC of C_1 , i.e., $C_2 = CBC-MAC_K(C_1) = E_K(0 \oplus C_1)$
 - But, $E_K(C_1 \oplus 0) = E_K(E_K(0 \oplus M_1) \oplus 0) = CBC-MAC_K(M_1 | 0)$
 - It's known that CBC-MAC is secure if message space is prefix-free.
 - Can you show, for every n, a collision between two messages of lengths 1 and n+1?



November 20, 2005

Introduction to Cryptography, Benny Pinkas

CBC-MAC for variable length messages

- Solution 1: The first block of the message is set to be its length. I.e., to authenticate M₁,...,M_n, apply CBC-MAC to (n,M₁,...,M_n).
 - Works since now message space is prefix-free.
 - Drawback: The message length (n) must be known in advance.
- "Solution 2": apply CBC-MAC to $(M_1,...,M_n,n)$
 - Message length does not have to be known is advance
 - But, this scheme is broken (see, M. Bellare, J. Kilian, P. Rogaway, The Security of Cipher Block Chaining, 1984)
- Solution 3: (preferable)
 - Use a second key K'.
 - Compute $MAC_{K,K'}(M_1,...,M_n) = E_{K'}(MAC_K(M_1,...,M_n))$
 - Essentially the same overhead as CBC-MAC

November 20, 2005

Introduction to Cryptography, Benny Pinkas

Hash functions

- A hash function h:X → Y maps long inputs to fixed size outputs. (|X|>|Y|)
- No secret key. The hash function algorithm is public.
- If |X| > |Y| there are collisions $(x \neq x')$ for which h(x) = h(x').

November 20, 2005

Introduction to Cryptography, Benny Pinkas

Security definitions for hash functions

- 1. Preimage resistance: for any y, it is hard to find x such that h(x)=y.
- 2. Weak collision resistance: for any $x \in X$, it is hard to find $x' \neq x$ such that h(x)=h(x'). (Also known as "universal one-way hash", or "second preimage resistance").
- 3. Strong collision resistance: it is hard to find any x,x' for which h(x)=h(x').
- It's easier to find collisions. (Under reasonable assumptions (3) → (1), and (3) → (2).) Therefore strong collision resistance is a stronger assumption.
- Real world hash functions: MD5, ŞHA-1, SHA-256.

Hmm..

November 20, 2005

Introduction to Cryptography, Benny Pinkas

The Birthday Phenomenon (Paradox)

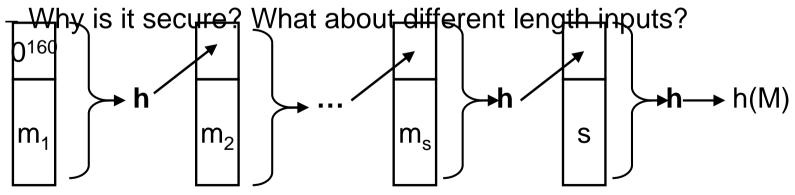
- For 23 people chosen at random, the probability that two of them have the same birthday is ½.
- Compare to: the prob. that one or more of them has the same birthday as Alan Turing is 23/365 (actually, 1-(1-1/365)²³.)
- More generally, for a random h:X \rightarrow Z, if we choose about $|Z|^{\frac{1}{2}}$ elements of Z at random (1.17 $|Z|^{\frac{1}{2}}$), the probability that two of them are mapped to the same image is > $\frac{1}{2}$.
- Implication: it's harder to achieve strong collision resistance
 - A random function with a n bit output
 - Find x,x' with h(x)=h(x') after about $2^{n/2}$ tries.
 - Find $x\neq 0$ s.t. h(x)=h(0) after about 2^n attempts.

November 20, 2005

Introduction to Cryptography, Benny Pinkas

From collision-resistance for fixed length inputs, to collision-resistance for arbitrary input lengths

- Hash function:
 - Input block length is usually 512 bits (|X|=512)
 - Output length is at least 160 bits (birthday attacks)
- Extending the domain to arbitrary inputs
 - Suppose h: $\{0,1\}^{512}$ -> $\{0,1\}^{160}$
 - Input: $M=m_1...m_s$, $|m_i|=512-160=352$. (what if $|M|\neq 352 \cdot i$ bits?)
 - Define: $y_0=0^{160}$. $y_i=h(y_{i-1},m_i)$. $y_{s+1}=h(y_s,s)$. $h(M)=y_{s+1}$.



November 20, 2005

Introduction to Cryptography, Benny Pinkas

Proof

- Show that if we can find M≠M' for which H(M)=H(M'), we can find blocks m ≠ m' for which h(m)=h(m').
- Case 1: suppose |M|=s, |M'|=s', and s ≠ s'
 - Then, collision: $H(M)=h(y_s,s)=h(y_{s'},s')=H(M')$
- Case 2: |M|=|M'|=s
 - We know that $H(M)=h(y_s,s)=h(y_s,s)=H(M')$
 - If $y_s \neq y'_s$ then we found a collision in h.
 - Otherwise, go from i=s-1 to i=1:
 - $y_{i+1} = y'_{i+1}$ implies $h(y_i, m_{i+1}) = h(y'_i, m'_{i+1})$.
 - If $y_i \neq y'_i$ or $m_{i+1} \neq m'_{i+1}$, then we found a collision.
 - M ≠ M' and therefore there is an i for which m_{i+1} ≠ m'_{i+1}

November 20, 2005

Introduction to Cryptography, Benny Pinkas

Basing MACs on Hash Functions

- Hash functions are not keyed. MAC_K uses a key.
- Best attack should not succeed with prob > max(2^{-|k|},2^{-|MAC()|}).
- Idea: MAC combines message and a secret key, and hashes them with a collision resistant hash function.
 - E.g. $MAC_K(m) = h(k,m)$. (insecure..., given $MAC_K(m)$ can compute $MAC_K(m,|m|,m')$, if using the MD construction)
 - $MAC_{K}(m) = h(m,k)$. (insecure..., regardless of key length, use a birthday attack to find m,m' such that h(m)=h(m').)
- How should security be proved?:
 - Show that if MAC is insecure than so is hash function h.
 - Insecurity of MAC: adversary can generate MAC_K(m) without knowing k.
 - Insecurity of h: adversary finds collisions $(x\neq x', h(x)=h(x').)$

November 20, 2005

Introduction to Cryptography, Benny Pinkas

HMAC

- Input: message m, a key K, and a hash function h.
- $\mathsf{HMAC}_{\mathsf{K}}(\mathsf{m}) = \mathsf{h}(\mathsf{K} \oplus \mathsf{opad}, \mathsf{h}(\mathsf{K} \oplus \mathsf{ipad}, \mathsf{m}))$
 - where ipad, opad are 64 byte long fixed strings
 - K is 64 byte long (if shorter, append 0s to get 64 bytes).
- Overhead: the same as that of applying h to m, plus an additional invocation to a short string.
- It was proven [BCK] that if HMAC is broken then either
 - h is not collision resistant (even when the initial block is random and secret), or
 - The output of h is not "unpredcitable" (when the initial block is random and secret)
- HMAC is used everywhere (SSL, IPSec).

November 20, 2005

Introduction to Cryptography, Benny Pinkas

What we learned today

- Message authentication
 - CBC MAC
 - Hash functions
 - The birthday paradox
 - HMAC

November 20, 2005

Introduction to Cryptography, Benny Pinkas