# Introduction to Cryptography Lecture 3

## **DES**

Meet in the middle attack Differential cryptanalysis Message authentication

## Benny Pinkas

November 13, 2005

Introduction to Cryptography, Benny Pinkas

## Books

- Open University book in Hebrew (based on Stinson's book)
- Lecture notes from Bar Ilan http://www.cs.biu.ac.il/~lindell/89-656/main-89-656.html

per 13, 2005 Introduction to Cryptography, Benny Pinkas

## **Feistel Networks**

- Encryption:
- Input:  $P = L_{i-1} | R_{i-1} . | L_{i-1} | = | R_{i-1} |$
- $-L_{i} = R_{i-1}$
- $-R_{i} = L_{i-1} \oplus F(K_{i}, R_{i-1})$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible).



November 13, 2

Introduction to Cryptography, Benny Pinkas

## DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
- How many rounds?
- How are the round keys generated?
- What is F?
- DES (Data Encryption Standard)
- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).
- Criticized for unpublished design *decisions* (designers did not want to disclose differential cryptanalysis).
- Linear cryptanalysis: about 240 known plaintexts

November 13, 2005

roduction to Cryptography, Benny Pinkas

page 4





- Computation overhead:
- 2<sup>56</sup> computation was demonstrated to be feasible.
- Moore's Law: computation speed doubles every 1.5 years.
- Attacker can use a network of machines (over the Internet?)
- 280 is considered to be the lower end of "infeasible"
- Brute force attack on DES: 256
- Anything more efficient is considered a "break"
- Memory:
- Terabyte = 2<sup>43</sup> bits
- 2<sup>n</sup> memory is probably less feasible than 2<sup>n</sup> computation

2005 Introduction to Contourably Renny Pinkas



## Double DES

• DES is out of date due to brute force attacks on its short key (56 bits)

• Why not apply DES twice with two keys?

- Double DES: DES  $_{k1.k2} = E_{k2}(E_{k1}(m))$ 

- Key length: 112 bits

- But, double DES is susceptible to a meet-in-the-middle attack, requiring ≈ 2<sup>56</sup> operations and storage.
- Compared to brute a force attack, requiring  $2^{112}$  operations and O(1) storage.

r 13, 2005 Introduction t

age 8

## Meet-in-the-middle attack

- Meet-in-the-middle attack
- $-c = \mathsf{E}_{\mathsf{k2}}(\mathsf{E}_{\mathsf{k1}}(\mathsf{m}))$
- $D_{k2} (c) = E_{k1}(m)$
- · The attack:
- Input: (m,c) for which  $c = E_{k2}(E_{k1}(m))$
- For every possible value of k<sub>1</sub>, generate and store E<sub>k1</sub>(m)
- For every possible value of  $k_2$ , check if  $D_{k2}(c)$  is in the table
- Might obtain several options for (k<sub>1</sub>,k<sub>2</sub>). Check them or repeat the process again with a new (m,c) pair.
- The attack is applicable to any iterated cipher

November 13, 2005

Introduction to Cryptography, Benny Pinkas

----

## Triple DES

- 3DES  $_{k1,k2} = E_{k1}(D_{k2}(E_{k1}(m)))$
- Why use Enc(Dec(Enc()))?
- Backward compatibility: setting k<sub>1</sub>=k<sub>2</sub> is compatible with single key DES
- Only two keys
- Effective key length is 112 bits
- Why not use three keys? There is a meet-in-the-middle attack with 2<sup>112</sup> operations
- 3DES provides good security. Widely used. Less efficient.

November 13, 200

Introduction to Cryptography, Benny Pinkas

page 11

## Meet-in-the-middle attack

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given two plaintext-ciphertext pairs (m,c) (m',c')
- The attack looks for k1,k2, such that  $D_{k2}$  (c) =  $E_{k1}$ (m) and  $D_{k2}$  (c') =  $E_{k1}$ (m')
- The correct value of k1,k2 satisfies both equalities
- There are 2<sup>112</sup> (actually 2<sup>112</sup>-1) other values for k1,k2.
- Each one of these satisfies the equalities with probability 2-128
- The probability that there exists one or more of these other pairs
  of keys, which satisfy both equalities, is bounded from above by
  2112-128 = 2-16.

November 13, 2005

Introduction to Cryptography, Benny Pinkas

nane 10





## Differential Cryptanalysis [Biham-Shamir 1990]

- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
- $-a=b \oplus c$
- -a = the bits of b in (known) permuted order
- Linear relations can be exposed by solving a system of linear equations

November 13, 2005

Introduction to Cryptography, Benny Pinkas

nage 13

# DES F functions Half Block (32 bits) F Source of S1 S2 S3 S4 S5 S6 S7 S8 non-linearity P November 13, 2005 Introduction to Cryptography, Benry Prikas

## A Linear F in a Feistel Network?

- Suppose  $F(R_{i-1}, K_i) = R_{i-1} \oplus K_i$
- Namely, that F is linear
- Then  $R_i = L_{i-1} \oplus R_{i-1} \oplus K_i$  $L_i = R_{i-1}$
- Write L<sub>16</sub>, R<sub>16</sub> as linear functions of L<sub>0</sub>, R<sub>0</sub> and K.
- Given  $L_0R_0$  and  $L_{16}R_{16}$  Solve and find K.
- F must therefore be non-linear.
- F is the only source of nonlinearity in DES.



Introduction to Cryptography, Benny Pinkas

nage 1

## Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
- The plaintexts are P and P\*
- Their difference is dP = P ⊕ P\*
- Let X and X\* be two intermediate values, for P and P\*, respectively, in the encryption process.
- Their difference is  $dX = X \oplus X^*$

November 13, 200

uction to Cryptography, Benny Pinkas

## The advantage of looking at XORs

- It's easy to predict the difference of the results of linear operations
- Unary operations, (e.g. P is a permutation of the bits of X)
- $-dP(x) = P(x) \oplus P(x^*) = P(x \oplus x^*) = P(dx)$
- XOR
- $-d(x \oplus y) = (x \oplus y) \oplus (x^* \oplus y^*) = (x \oplus x^*) \oplus (y \oplus y^*)$  $dx \oplus dy$
- Mixing the key
- $-d(x \oplus k) = (x \oplus k) \oplus (x^* \oplus k) = x \oplus x^* = dx$
- The result here is key independent (the key disappears)

November 13, 2005

Introduction to Cryptography, Benny Pinkas

-----

## Distribution of Y' for S1

- dX=110100
- 2<sup>6</sup>=64 input pairs, { (000000,110100), (000001,110101),...}
- For each pair compute xor of outputs of S1
- E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.
- Table of frequencies of each dY:

| 0000       | 0001       | 0010       | 0011       | 0100       | 0101       | 0110       | 0111 |
|------------|------------|------------|------------|------------|------------|------------|------|
| $\bigcirc$ | 8          | 16         | 6          | 2          | $\bigcirc$ | $\bigcirc$ | 12   |
| 1000       | 1001       | 1010       | 1011       | 100        | 1101       | 1110       | 1111 |
| 6          | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | 8          | $\bigcirc$ | 6    |

November 13, 200

Introduction to Cryptography, Benny Pinkas

page 19

## Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X\* are inputs to the same S-box, and we know their difference dX = X ⊕ X\*.
- $\cdot Y = S(X)$
- When dX=0, X=X\*, and therefore Y=S(X)=S(X\*)=Y\*, and dY=0.
- When dX≠0, X≠X\* and we don't know dY for sure, but we can investigate its distribution.
- For example,

November 13, 200

Introduction to Cryptography, Benny Pinkas

---- 40

## **Differential Probabilities**

- The probability of dX ⇒ dY is the probability that a pair of difference dX results in a pair of difference dY (for a given S-box).
- Namely, the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values
- $dX=0 \Rightarrow dY=0$
- Entries with value 16/64.

November 13, 2005

Introduction to Cryptography, Benny Pinkas

E 20









## DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if  $dL_0$ =40080000<sub>x</sub>,  $dR_0$ =04000000<sub>x</sub> Then, with probability ¼,  $dL_3$ =04000000<sub>x</sub>,  $dR_3$ =4008000<sub>x</sub>
- 8 round DES is broken given 2<sup>14</sup> chosen plaintexts.
- 16 round DES is broken given 2<sup>47</sup> chosen plaintexts...

November 13, 2005

Introduction to Cryptography, Benny Pinkas

nane 25

## Data Integrity, Message Authentication

 Challenge: an active adversary might change messages exchanged between Alice and Bob



• Authentication is orthogonal to secrecy. A relevant challenge regardless of whether encryption is applied.

November 13, 2008

Introduction to Cryptography, Benny Pinkas

page 27

## **AES (Advanced Encryption Standard)**

- Design initiated in 1997 by NIST
- Goals: improve security and software efficiency of DES
- 15 submissions, several rounds of public analysis
- The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

November 13, 200

Introduction to Cryptography, Benny Pinkas

## One Time Pad

- OTP is a perfect cipher, yet provides no authentication
- Plaintext x<sub>1</sub>x<sub>2</sub>...x<sub>n</sub>
- Key  $k_{1k2}...k_n$
- Ciphertext  $c_1 = x_1 \oplus k_1$ ,  $c_2 = x_2 \oplus k_2$ ,..., $c_n = x_n \oplus k_n$
- Adversary changes, e.g., c₂ to 1⊕c₂
- User decrypts 1⊕x₂
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)

November 13, 2008

Introduction to Cryptography, Benny Pinkas

0.20