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Books

• Open University book in Hebrew (based on Stinson’s 
book)

• Lecture notes from Bar Ilan
http://www.cs.biu.ac.il/~lindell/89-656/main-89-656.html
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Feistel Networks

• Encryption:
• Input: P = L i-1 | R i-1. |L i-1|=|R i-1|

– L i = R i-1
– R i = L i-1 ⊕ F(K i, R i-1)

• Decryption?

• No matter which function is 
used as F, we obtain a 
permutation (i.e., F is reversible).
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DES  (Data Encryption Standard)

• A Feistel network encryption algorithm:
– How many rounds?
– How are the round keys generated?
– What is F?

• DES (Data Encryption Standard)
– Designed by IBM and the NSA, 1977.
– 64 bit input and output
– 56 bit key
– 16 round Feistel network
– Each round key is a 48 bit subset of the key

• Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).
• Criticized for unpublished design decisions (designers did not 

want to disclose differential cryptanalysis).
• Linear cryptanalysis: about 240 known plaintexts
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DES diagram (Data Encryption Standard)

Initial permutation:

- not secret

- makes implementations

in software less efficient
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DES F functions

Expansion

to 48 bits
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How much effort can be invested in an attack?

• Computation overhead:
– 256 computation was demonstrated to be feasible.
– Moore’s Law: computation speed doubles every 1.5 years.
– Attacker can use a network of machines (over the 

Internet?)
– 280 is considered to be the lower end of “infeasible”

– Brute force attack on DES: 256

– Anything more efficient is considered a “break”

• Memory:
– Terabyte = 243 bits
– 2n memory is probably less feasible than 2n computation
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Double DES

• DES is out of date due to brute force attacks on its 
short key (56 bits)

• Why not apply DES twice with two keys?
– Double DES: DES k1,k2 = Ek2(Ek1(m))
– Key length: 112 bits

• But, double DES is susceptible to a meet-in-the-middle
attack, requiring ≈ 256 operations and storage.
– Compared to brute a force attack, requiring 2112 operations 

and O(1) storage.
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Meet-in-the-middle attack

• Meet-in-the-middle attack
– c = Ek2(Ek1(m))
– Dk2 (c) =  Ek1(m)

• The attack:
– Input: (m,c) for which c = Ek2(Ek1(m))
– For every possible value of k1, generate and store Ek1(m)
– For every possible value of k2, check if Dk2(c) is in the table
– Might obtain several options for (k1,k2). Check them or 

repeat the process again with a new (m,c) pair.

• The attack is applicable to any iterated cipher
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Meet-in-the-middle attack 

• The plaintext and the ciphertext are 64 bits long
• The key is 56 bits long

• Suppose that we are given two plaintext-ciphertext pairs (m,c) 
(m’,c’)

• The attack looks for k1,k2, such that Dk2 (c) =  Ek1(m) and Dk2 (c’) 
=  Ek1(m’)

• The correct value of k1,k2 satisfies both equalities
• There are 2112 (actually 2112-1) other values for k1,k2.
• Each one of these satisfies the equalities with probability 2-128

• The probability that there exists one or more of these other pairs 
of keys, which satisfy both equalities, is bounded from above by
2112-128 = 2-16.
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Triple DES

• 3DES k1,k2 = Ek1(Dk2(Ek1(m))

• Why use Enc(Dec(Enc( ))) ?
– Backward compatibility: setting k1=k2 is compatible with 

single key DES

• Only two keys
– Effective key length is 112 bits
– Why not use three keys? There is a meet-in-the-middle 

attack with 2112 operations

• 3DES provides good security. Widely used. Less 
efficient.
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Differential Cryptanalysis of DES

S-boxes

DES diagram:
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Differential Cryptanalysis [Biham-Shamir 1990]

• The first attack to reduce the overhead of breaking DES 
to below exhaustive search

• Very powerful when applied to other encryption 
algorithms

• Depends on the structure of the encryption algorithm
• Observation: all operations except for the s-boxes are 

linear
• Linear operations:

– a = b ⊕ c
– a = the bits of b in (known) permuted order

• Linear relations can be exposed by solving a system of 
linear equations

page 14November 13, 2005 Introduction to Cryptography, Benny Pinkas

A Linear F in a Feistel Network?

• Suppose F(Ri-1,Ki) = Ri-1 ⊕ Ki

– Namely, that F is linear

• Then Ri = Li-1 ⊕ Ri-1 ⊕ Ki

Li = Ri-1

• Write L16, R16 as linear functions 
of L0, R0 and K. 

– Given L0R0 and L16R16 Solve 
and find K.

• F must therefore be non-linear.

• F is the only source of non-
linearity in DES.
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DES F functions

Source of
non-linearity
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Differential Cryptanalysis

• The S-boxes are non-linear
• We study the differences between two encryptions of 

two different plaintexts

• Notation:
– The plaintexts are P and P*
– Their difference is dP = P ⊕ P*
– Let X and X* be two intermediate values, for P and P*, 

respectively, in the encryption process.
– Their difference is  dX = X ⊕ X*
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The advantage of looking at XORs

• It’s easy to predict the difference of the results of linear 
operations

• Unary operations, (e.g. P is a permutation of the bits of X)

– dP(x) = P(x) ⊕ P(x*) = P(x ⊕ x*) = P(dx)
• XOR

– d(x ⊕ y) = (x ⊕ y) ⊕ (x* ⊕ y*) = (x ⊕ x*) ⊕ (y ⊕ y*)            = 
dx ⊕ dy

• Mixing the key
– d(x ⊕ k) = (x ⊕ k) ⊕ (x* ⊕ k) = x ⊕ x* = dx
– The result here is key independent (the key disappears)
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Differences and S-boxes

• S-box: a function (table) from 6 bit inputs to 4 bit output

• X and X* are inputs to the same S-box, and we know 
their difference dX = X ⊕ X*.

• Y = S(X)
• When dX=0, X=X*, and therefore Y=S(X)=S(X*)=Y*, 

and dY=0.
• When dX≠0,  X≠X* and we don’t know dY for sure, but 

we can investigate its distribution.

• For example,
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Distribution of Y’ for S1

• dX=110100
• 26=64 input pairs, { (000000,110100), (000001,110101),…}

• For each pair compute xor of outputs of S1
• E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.
• Table of frequencies of each dY:

60800006

11111110110111001011101010011000

1200261680

01110110010101000011001000010000
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Differential Probabilities

• The probability of dX ⇒ dY is the probability that a pair 
of difference dX results in a pair of difference dY (for a 
given S-box).

• Namely, the entries in the table divided by 64.

• Differential cryptanalysis uses entries with large values
– dX=0 ⇒ dY=0
– Entries with value 16/64.
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Warmup

dL0 dR0= 0 (R0=R0*)

F K

dL1 = dR0 = 0 dR1 = dL0

Inputs: L0R0,   L0*R0*, s.t. R0=R0*.  
Namely, inputs whose xor is dL0 0
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3 Round DES

dL0 = 01960018 dR0 = 0

F K

F K

dL3 =48000000 dR3=4196401A

F K

The attacker knows the two 
plaintext/ciphertext pairs, 
and therefore also their 
differences
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Intermediate differences equal to 
plaintext/ciphertext differences

dL0 = 01960018 dR0 = 0

F K

F K

dL3=48000000 dR3=4196401A

F K

dL1 = 0 dR1 =01960018

dR2 =48000000dL2 =01960018

dF = 4196401A 
⊕ 01960018
=    40004002

Note that here the 
adversary also
knows the actual 
two values 
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Finding K

L3’ =48000000 R3’ =4196401A

K3

R2’ =48000000L2’ =01960018

S boxes

Output xor of F (i.e., 

S boxes) is 40004002

⇒Table enumerates

options for the pairs of

inputs to S box

The actual two inputs

to F are known

Find which K3 maps the inputs to an 

s-box input pair that results in the output pair!
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DES with more than 3 rounds

• Carefully choose pairs of plaintexts with specific xor, and 
determine xor of pairs of intermediate values at various 
rounds. 

• E.g., if dL0=40080000x, dR0=04000000x

Then, with probability ¼, dL3=04000000x, dR3=4008000x

• 8 round DES is broken given 214 chosen plaintexts.
• 16 round DES is broken given 247 chosen plaintexts...
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AES (Advanced Encryption Standard)

• Design initiated in 1997 by NIST
– Goals: improve security and software efficiency of DES 
– 15 submissions, several rounds of public analysis
– The winning algorithm: Rijndael

• Input block length: 128 bits
• Key length: 128, 192 or 256 bits
• Multiple rounds (10, 12 or 14), but does not use a 

Feistel network
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Data Integrity, Message Authentication

• Challenge: an active adversary might change 
messages exchanged between Alice and Bob

Alice

Eve

Bob

• Authentication is orthogonal to secrecy. A relevant  
challenge regardless of whether encryption is applied.

M
M M’

M’
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One Time Pad

• OTP is a perfect cipher, yet provides no authentication
– Plaintext x1x2…xn

– Key k1k2…kn

– Ciphertext c1=x1⊕k1, c2=x2⊕k2,…,cn=xn⊕kn

• Adversary changes, e.g., c2 to 1⊕c2

• User decrypts 1⊕x2

• Error-detection codes are insufficient. (For example, 
linear codes can be changed by the adversary, even if 
encrypted.)


