

Books

- Open University book in Hebrew (based on Stinson's book)
- Lecture notes from Bar Ilan http://www.cs.biu.ac.il/~ lindell/89-656/main-89-656.html

Feistel Networks

- Encryption:
- Input: $\mathrm{P}=\mathrm{L}_{\mathrm{i}-1}\left|\mathrm{R}_{\mathrm{i}-1} \cdot\right| \mathrm{L}_{\mathrm{i}-1}\left|=\left|\mathrm{R}_{\mathrm{i}-1}\right|\right.$
$-L_{i}=R_{i-1}$
$-R_{i}=L_{i-1} \oplus F\left(K_{i}, R_{i-1}\right)$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible).

DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
- How many rounds?
- How are the round keys generated?
- What is F?
- DES (Data Encryption Standard)
- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput \approx software: $10 \mathrm{Mb} / \mathrm{sec}$, hardware: $1 \mathrm{~Gb} / \mathrm{sec}$ (in 1991!).
- Criticized for unpublished design decisions (designers did not want to disclose differential cryptanalysis).
- Linear cryptanalysis: about 2^{40} known plaintexts

DES diagram (Data Encryption Standard)

How much effort can be invested in an attack?

- Computation overhead:
- 2^{56} computation was demonstrated to be feasible.
- Moore's Law: computation speed doubles every 1.5 years.
- Attacker can use a network of machines (over the Internet?)
- 2^{80} is considered to be the lower end of "infeasible"
- Brute force attack on DES: 2^{56}
- Anything more efficient is considered a "break"
- Memory:
- Terabyte $=2^{43}$ bits
- 2^{n} memory is probably less feasible than 2^{n} computation

DES F functions

Double DES

- DES is out of date due to brute force attacks on its short key (56 bits)
- Why not apply DES twice with two keys? - Double DES: DES ${ }_{k 1, k 2}=E_{k 2}\left(E_{k 1}(m)\right)$
- Key length: 112 bits

- But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.
- Compared to brute a force attack, requiring 2^{112} operations and $\mathrm{O}(1)$ storage.

Meet-in-the-middle attack

- Meet-in-the-middle attack
$-\mathrm{c}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right)$
$-D_{\mathrm{k} 2}(\mathrm{c})=\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})$
- The attack:
- Input: (m, c) for which $\mathrm{c}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right.$)
- For every possible value of k_{1}, generate and store $E_{k 1}(m)$
- For every possible value of k_{2}, check if $D_{k 2}(c)$ is in the table
- Might obtain several options for (k_{1}, k_{2}). Check them or repeat the process again with a new (m, c) pair.
- The attack is applicable to any iterated cipher

Triple DES

- SDES $_{\mathrm{k} 1, \mathrm{k} 2}=\mathrm{E}_{\mathrm{k} 1}\left(\mathrm{D}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right)\right.$
- Why use Enc(Dec(Enc())) ?
- Backward compatibility: setting $k_{1}=k_{2}$ is compatible with single key DES
- Only two keys
- Effective key length is 112 bits
- Why not use three keys? There is a meet-in-the-middle attack with 2^{112} operations
- 3DES provides good security. Widely used. Less efficient.

Meet-in-the-middle attack

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given two plaintext-ciphertext pairs (m,c) ($\mathrm{m}^{\prime}, \mathrm{c}^{\prime}$)
- The attack looks for $\mathrm{k} 1, \mathrm{k} 2$, such that $\mathrm{D}_{\mathrm{k} 2}(\mathrm{c})=\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})$ and $\mathrm{D}_{\mathrm{k} 2}\left(\mathrm{c}^{\prime}\right)$ $=E_{k 1}\left(m^{\prime}\right)$
- The correct value of $\mathrm{k} 1, \mathrm{k} 2$ satisfies both equalities
- There are 2^{112} (actually $2^{112-1)}$) other values for $\mathrm{k} 1, \mathrm{k} 2$.
- Each one of these satisfies the equalities with probability 2^{-128}
- The probability that there exists one or more of these other pairs of keys, which satisfy both equalities, is bounded from above by $2^{112-128}=2^{-16}$.

Differential Cryptanalysis of DES

Differential Cryptanalysis [Biham-Shamir 1990]

- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
$-a=b \oplus c$
- $a=$ the bits of b in (known) permuted order
- Linear relations can be exposed by solving a system of linear equations

A Linear F in a Feistel Network?

- Suppose $\mathrm{F}\left(\mathrm{R}_{\mathrm{i}-1}, \mathrm{~K}_{\mathrm{i}}\right)=\mathrm{R}_{\mathrm{i}-1} \oplus \mathrm{~K}_{\mathrm{i}}$
- Namely, that F is linear
- Then $R_{i}=L_{i-1} \oplus R_{i-1} \oplus K_{i}$

$$
L_{i}=R_{i-1}
$$

- Write L_{16}, R_{16} as linear functions of L_{0}, R_{0} and K.
- Given $L_{0} R_{0}$ and $L_{16} R_{16}$ Solve and find K .
- F must therefore be non-linear.

- F is the only source of non-
linearity in DES.

Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
- The plaintexts are P and P^{*}
- Their difference is $\mathrm{dP}=\mathrm{P} \oplus \mathrm{P}^{*}$
- Let X and X^{*} be two intermediate values, for P and P^{*}, respectively, in the encryption process.
- Their difference is $d X=X \oplus X^{*}$

The advantage of looking at XORs

- It's easy to predict the difference of the results of linear operations
- Unary operations, (e.g. P is a permutation of the bits of X)
$-d P(x)=P(x) \oplus P\left(x^{*}\right)=P\left(x \oplus x^{*}\right)=P(d x)$
- XOR
$-\mathrm{d}(\mathrm{x} \oplus \mathrm{y})=(\mathrm{x} \oplus \mathrm{y}) \oplus\left(\mathrm{x}^{*} \oplus \mathrm{y}^{*}\right)=\left(\mathrm{x} \oplus \mathrm{x}^{*}\right) \oplus\left(\mathrm{y} \oplus \mathrm{y}^{*}\right) \quad=$ $d x \oplus d y$
- Mixing the key
$-\mathrm{d}(\mathrm{x} \oplus \mathrm{k})=(\mathrm{x} \oplus \mathrm{k}) \oplus\left(\mathrm{x}^{*} \oplus \mathrm{k}\right)=\mathrm{x} \oplus \mathrm{x}^{*}=\mathrm{dx}$
- The result here is key independent (the key disappears)

Distribution of Y^{\prime} for S1

- $d X=110100$
- $2^{6}=64$ input pairs, $\{(000000,110100),(000001,110101), \ldots\}$
- For each pair compute xor of outputs of S1
- E.g., $\mathrm{S} 1(000000)=1110, \mathrm{~S} 1(110100)=1001 . \mathrm{dY}=0111$.
- Table of frequencies of each dY :

0000	0001	0010	0011	0100	0101	0110	0111
0	8	16	6	2	0	0	12
1000	001	010					
6	0	0	1017	100	1101	1110	1111
0	8	0	6				

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X^{*} are inputs to the same S-box, and we know their difference $d X=X \oplus X^{*}$.
- $Y=S(X)$
- When $d X=0, X=X^{*}$, and therefore $Y=S(X)=S\left(X^{*}\right)=Y^{*}$, and $\mathrm{dY}=0$.
- When $d X \neq 0, X \neq X^{*}$ and we don't know $d Y$ for sure, but we can investigate its distribution.
- For example,

Differential Probabilities

- The probability of $d X \Rightarrow d Y$ is the probability that a pair of difference $d X$ results in a pair of difference $d Y$ (for a given S-box).
- Namely, the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values
$-d X=0 \Rightarrow d Y=0$
- Entries with value 16/64.

Warmup

Inputs: $\mathrm{L}_{0} \mathrm{R}_{0}, \quad \mathrm{~L}_{0}{ }^{*} \mathrm{R}_{0}{ }^{*}$, s.t. $\mathrm{R}_{0}=\mathrm{R}_{0}{ }^{*}$.
Namely, inputs whose xor is $\mathrm{dL}_{0} 0$

3 Round DES

The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

Finding K

DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if $\mathrm{dL}_{0}=40080000_{x}, \mathrm{dR}_{0}=04000000_{x}$

Then, with probability $1 / 4, \mathrm{dL}_{3}=04000000_{x}, \mathrm{dR}_{3}=4008000_{x}$

- 8 round DES is broken given 2^{14} chosen plaintexts.
- 16 round DES is broken given 2^{47} chosen plaintexts...

Data Integrity, Message Authentication

- Challenge: an active adversary might change messages exchanged between Alice and Bob

- Authentication is orthogonal to secrecy. A relevant challenge regardless of whether encryption is applied.

AES (Advanced Encryption Standard)

- Design initiated in 1997 by NIST
- Goals: improve security and software efficiency of DES
- 15 submissions, several rounds of public analysis
- The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

One Time Pad

- OTP is a perfect cipher, yet provides no authentication
- Plaintext $x_{1} x_{2} \ldots x_{n}$
- Key $\mathrm{k}_{1 \mathrm{k} 2} \ldots \mathrm{k}_{\mathrm{n}}$
- Ciphertext $\mathrm{c}_{1}=\mathrm{x}_{1} \oplus \mathrm{k}_{1}, \mathrm{c}_{2}=\mathrm{x}_{2} \oplus \mathrm{k}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}=\mathrm{x}_{\mathrm{n}} \oplus \mathrm{k}_{\mathrm{n}}$
- Adversary changes, e.g., c_{2} to $1 \oplus \mathrm{c}_{2}$
- User decrypts $1 \oplus \mathrm{x}_{2}$
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)

