Introduction to Cryptography Lecture 3

DES

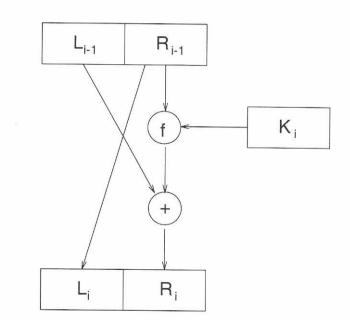
Meet in the middle attack Differential cryptanalysis Message authentication

Benny Pinkas

November 13, 2005

Introduction to Cryptography, Benny Pinkas

Books


- Open University book in Hebrew (based on Stinson's book)
- Lecture notes from Bar Ilan http://www.cs.biu.ac.il/~lindell/89-656/main-89-656.html

November 13, 2005

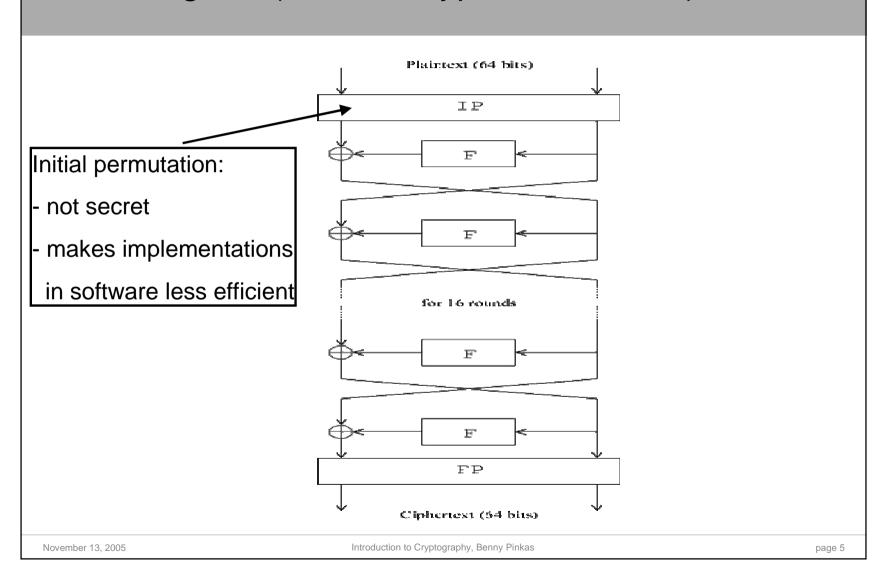
Introduction to Cryptography, Benny Pinkas

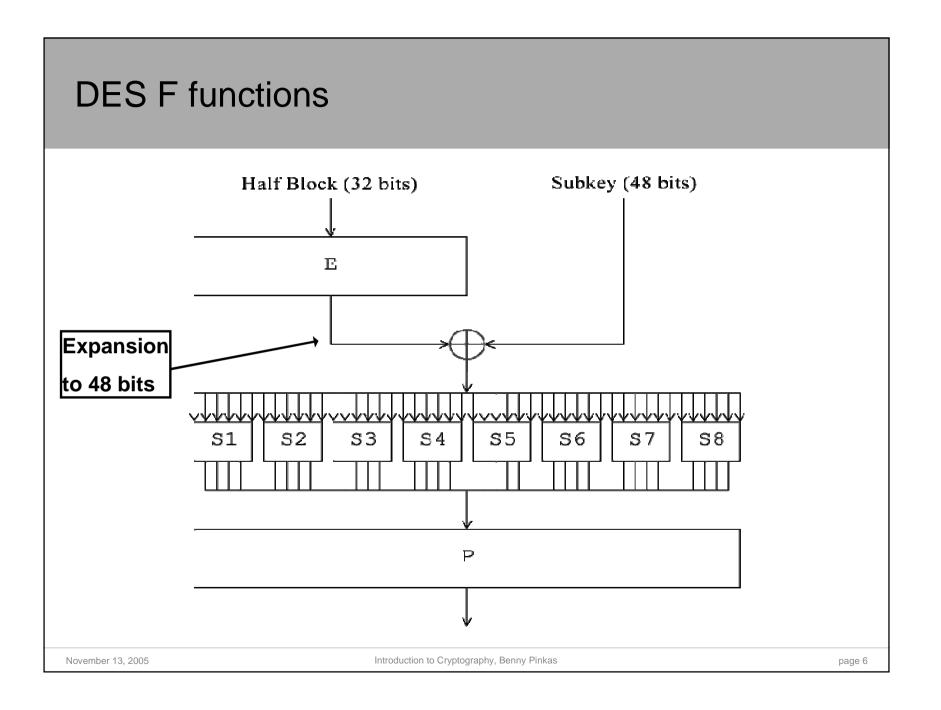
Feistel Networks

- Encryption:
- Input: $P = L_{i-1} | R_{i-1} . | L_{i-1} | = | R_{i-1} |$ $- L_i = R_{i-1}$ $- R_i = L_{i-1} \oplus F(K_i, R_{i-1})$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible).

November 13, 2005

Introduction to Cryptography, Benny Pinkas


DES (Data Encryption Standard)


- A Feistel network encryption algorithm:
 - How many rounds?
 - How are the round keys generated?
 - What is F?
- DES (Data Encryption Standard)
 - Designed by IBM and the NSA, 1977.
 - 64 bit input and output
 - 56 bit key
 - 16 round Feistel network
 - Each round key is a 48 bit subset of the key
- Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).
- Criticized for unpublished design decisions (designers did not want to disclose differential cryptanalysis).
- Linear cryptanalysis: about 2⁴⁰ known plaintexts

November 13, 2005

Introduction to Cryptography, Benny Pinkas

DES diagram (Data Encryption Standard)

How much effort can be invested in an attack?

- Computation overhead:
 - 2⁵⁶ computation was demonstrated to be feasible.
 - Moore's Law: computation speed doubles every 1.5 years.
 - Attacker can use a network of machines (over the Internet?)
 - 280 is considered to be the lower end of "infeasible"
 - Brute force attack on DES: 2⁵⁶
 - Anything more efficient is considered a "break"
- Memory:
 - Terabyte = 2^{43} bits
 - 2ⁿ memory is probably less feasible than 2ⁿ computation

November 13, 2005

Double DES

• DES is out of date due to brute force attacks on its

short key (56 bits)

Why not apply DES twice with two keys?

- Double DES: DES $_{k1.k2} = E_{k2}(E_{k1}(m))$

- Key length: 112 bits

- But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.
 - Compared to brute a force attack, requiring 2¹¹² operations and O(1) storage.

November 13, 2005

Introduction to Cryptography, Benny Pinkas

Meet-in-the-middle attack

- Meet-in-the-middle attack
 - $-c = E_{k2}(E_{k1}(m))$
 - $D_{k2} (c) = E_{k1}(m)$
- The attack:
 - Input: (m,c) for which $c = E_{k2}(E_{k1}(m))$
 - For every possible value of k_1 , generate and store $E_{k_1}(m)$
 - For every possible value of k_2 , check if $D_{k2}(c)$ is in the table
 - Might obtain several options for (k₁,k₂). Check them or repeat the process again with a new (m,c) pair.
- The attack is applicable to any iterated cipher

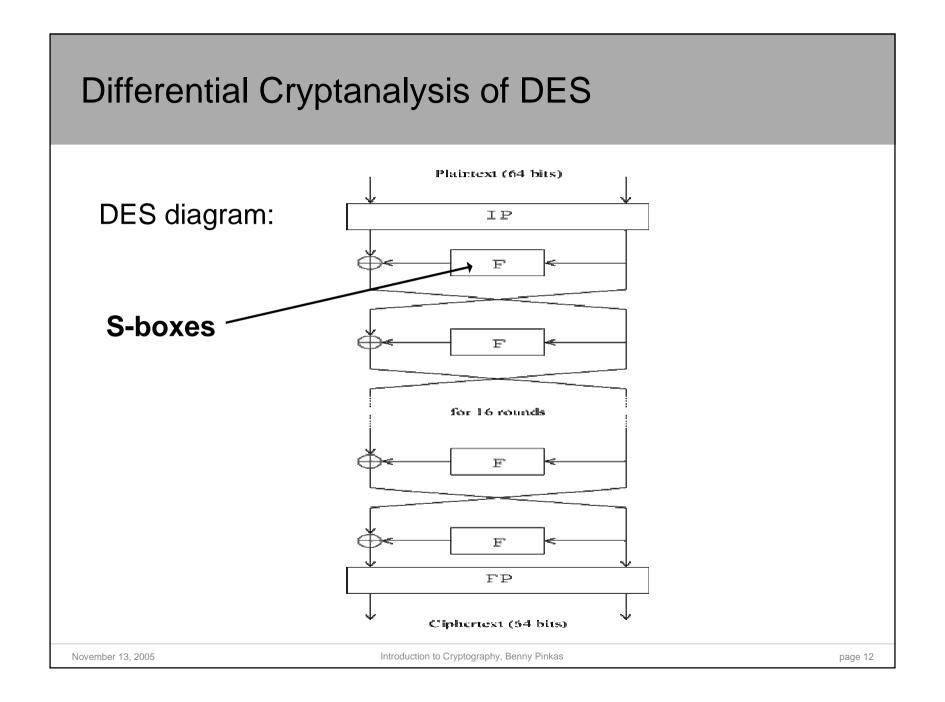
November 13, 2005

Introduction to Cryptography, Benny Pinkas

Meet-in-the-middle attack

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given two plaintext-ciphertext pairs (m,c) (m',c')
- The attack looks for k1,k2, such that D_{k2} (c) = E_{k1} (m) and D_{k2} (c') = E_{k1} (m')
- The correct value of k1,k2 satisfies both equalities
- There are 2¹¹² (actually 2¹¹²-1) other values for k1,k2.
- Each one of these satisfies the equalities with probability 2⁻¹²⁸
- The probability that there exists one or more of these other pairs of keys, which satisfy both equalities, is bounded from above by $2^{112-128} = 2^{-16}$.

November 13, 2005


Introduction to Cryptography, Benny Pinkas

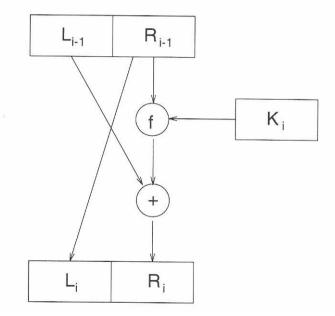
Triple DES

- 3DES $_{k1,k2} = E_{k1}(D_{k2}(E_{k1}(m)))$
- Why use Enc(Dec(Enc())) ?
 - Backward compatibility: setting k₁=k₂ is compatible with single key DES
- Only two keys
 - Effective key length is 112 bits
 - Why not use three keys? There is a meet-in-the-middle attack with 2¹¹² operations
- 3DES provides good security. Widely used. Less efficient.

November 13, 2005

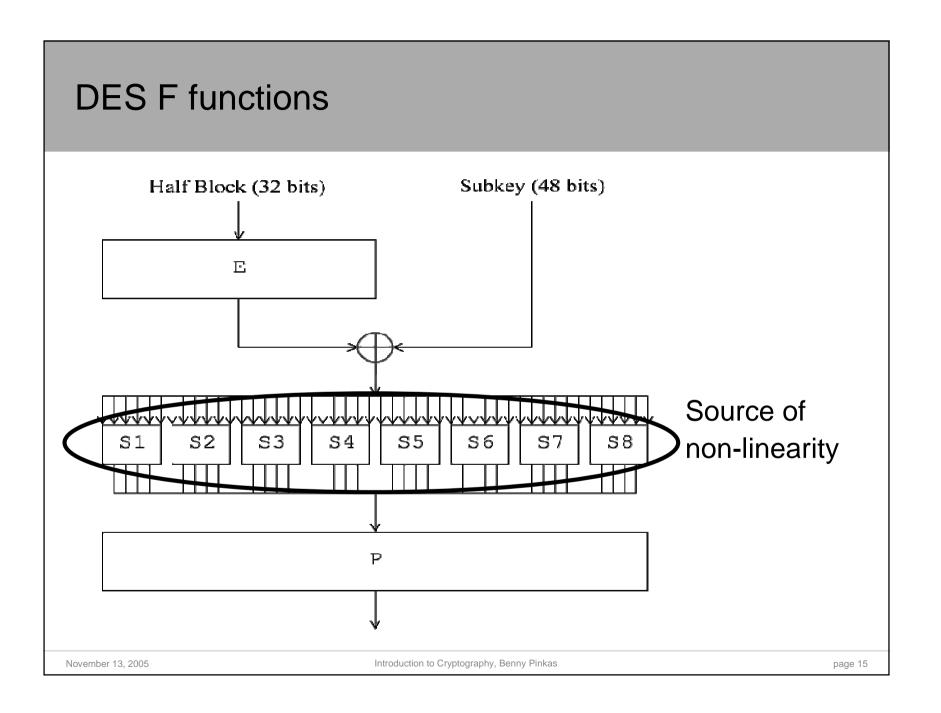
Introduction to Cryptography, Benny Pinkas

Differential Cryptanalysis [Biham-Shamir 1990]


- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
 - $-a=b \oplus c$
 - -a = the bits of b in (known) permuted order
- Linear relations can be exposed by solving a system of linear equations

November 13, 2005

Introduction to Cryptography, Benny Pinkas


A Linear F in a Feistel Network?

- Suppose $F(R_{i-1}, K_i) = R_{i-1} \oplus K_i$
 - Namely, that F is linear
- Then $R_i = L_{i-1} \oplus R_{i-1} \oplus K_i$ $L_i = R_{i-1}$
- Write L_{16} , R_{16} as linear functions of L_0 , R_0 and K.
 - Given L₀R₀ and L₁₆R₁₆ Solve and find K.
- F must therefore be non-linear.
- F is the only source of nonlinearity in DES.

November 13, 2005

Introduction to Cryptography, Benny Pinkas

Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts
- Notation:
 - The plaintexts are P and P*
 - Their difference is dP = P ⊕ P*
 - Let X and X* be two intermediate values, for P and P*, respectively, in the encryption process.
 - Their difference is $dX = X \oplus X^*$

November 13, 2005

Introduction to Cryptography, Benny Pinkas

The advantage of looking at XORs

- It's easy to predict the difference of the results of linear operations
- Unary operations, (e.g. P is a permutation of the bits of X)

$$-dP(x) = P(x) \oplus P(x^*) = P(x \oplus x^*) = P(dx)$$

• XOR

$$-d(x \oplus y) = (x \oplus y) \oplus (x^* \oplus y^*) = (x \oplus x^*) \oplus (y \oplus y^*) = dx \oplus dy$$

- Mixing the key
 - $-d(x \oplus k) = (x \oplus k) \oplus (x^* \oplus k) = x \oplus x^* = dx$
 - The result here is key independent (the key disappears)

November 13, 2005

Introduction to Cryptography, Benny Pinkas

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X* are inputs to the same S-box, and we know their difference $dX = X \oplus X^*$.
- Y = S(X)
- When dX=0, X=X*, and therefore Y=S(X)=S(X*)=Y*, and dY=0.
- When dX≠0, X≠X* and we don't know dY for sure, but we can investigate its distribution.
- For example,

November 13, 2005

Introduction to Cryptography, Benny Pinkas

Distribution of Y' for S1

- dX=110100
- 2⁶=64 input pairs, { (000000,110100), (000001,110101),...}
- For each pair compute xor of outputs of S1
- E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.
- Table of frequencies of each dY:

0000	0001	0010	0011	0100	0101	0110	0111
0	8	16	6	2	0	0	12
1000	1001	1010	1011	1100	1101	1110	1111
6	0	0	0	0	8	0	6

November 13, 2005

Introduction to Cryptography, Benny Pinkas

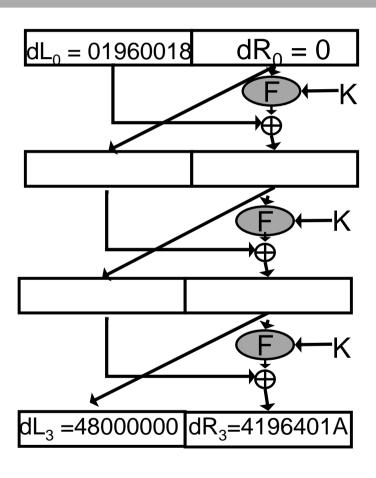
Differential Probabilities

- The probability of dX ⇒ dY is the probability that a pair of difference dX results in a pair of difference dY (for a given S-box).
- Namely, the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values
 - $dX=0 \Rightarrow dY=0$
 - Entries with value 16/64.

November 13, 2005

Introduction to Cryptography, Benny Pinkas

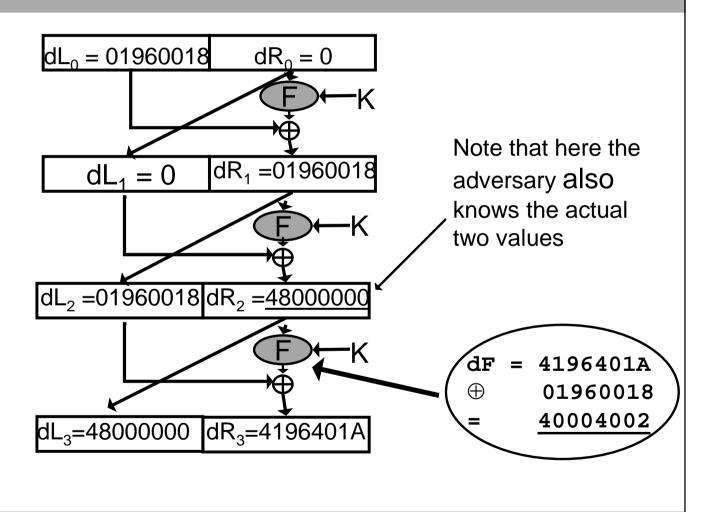
Warmup


Inputs: L_0R_0 , L_0*R_0* , s.t. $R_0=R_0*$. Namely, inputs whose xor is dL_0 0

November 13, 2005

Introduction to Cryptography, Benny Pinkas

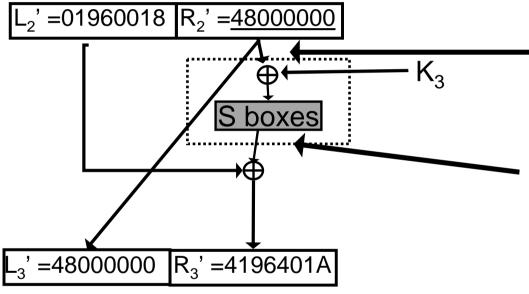
3 Round DES



The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

November 13, 2005

Introduction to Cryptography, Benny Pinkas


Intermediate differences equal to plaintext/ciphertext differences

November 13, 2005

Introduction to Cryptography, Benny Pinkas

Finding K

Find which K₃ maps the inputs to an s-box input pair that results in the output pair!

The actual two inputs to F are known

Output xor of F (i.e., S boxes) is 40004002

⇒Table enumerates options for the pairs of inputs to S box

November 13, 2005

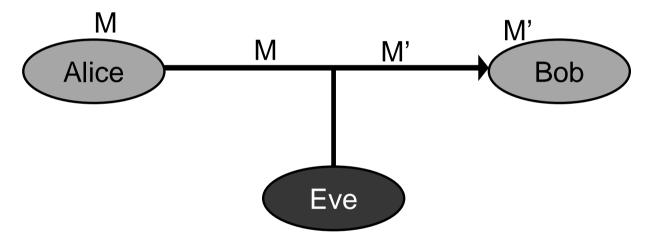
Introduction to Cryptography, Benny Pinkas

DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if $dL_0=40080000_x$, $dR_0=04000000_x$ Then, with probability ¼, $dL_3=04000000_x$, $dR_3=4008000_x$
- 8 round DES is broken given 2¹⁴ chosen plaintexts.
- 16 round DES is broken given 2⁴⁷ chosen plaintexts...

November 13, 2005

Introduction to Cryptography, Benny Pinkas


AES (Advanced Encryption Standard)

- Design initiated in 1997 by NIST
 - Goals: improve security and software efficiency of DES
 - 15 submissions, several rounds of public analysis
 - The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

November 13, 2005

Data Integrity, Message Authentication

 Challenge: an active adversary might change messages exchanged between Alice and Bob

• Authentication is orthogonal to secrecy. A relevant challenge regardless of whether encryption is applied.

November 13, 2005

Introduction to Cryptography, Benny Pinkas

One Time Pad

- OTP is a perfect cipher, yet provides no authentication
 - Plaintext x₁x₂...x_n
 - Key k_{1k2}...k_n
 - Ciphertext $c_1=x_1\oplus k_1$, $c_2=x_2\oplus k_2,...,c_n=x_n\oplus k_n$
- Adversary changes, e.g., c₂ to 1⊕c₂
- User decrypts 1⊕x₂
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)

November 13, 2005

Introduction to Cryptography, Benny Pinkas