Introduction to Cryptography

Lecture 2

Benny Pinkas

November 6, 2005

Introduction to Cryptography, Benny Pinkas

Perfect Ciphers

- A simple criteria for perfect ciphers.
- Claim: The cipher is perfect if, and only if,
 ∀ m₁,m₂∈M, ∀cipher c,
 Pr(Enc(m₁)=c) = Pr(Enc(m₂)=c). (homework)
- Idea: Regardless of the plaintext, the adversary sees the same distribution of ciphertexts.
- Note that the proof cannot assume that the cipher is the one-time-pad, but rather only that Pr(plaintext = P | ciphertext = C) = Pr(plaintext = P)

November 6, 200

Introduction to Cryptography, Benny Pinkas

page 3

Perfect Cipher

- What type of security would we like to achieve?
- "Given C, the adversary has no idea what M is"
- Impossible since adversary might have a-priori information
- In an "ideal" world, the message will be delivered in a magical way, out of the reach of the adversary
- We would like to achieve similar security
- Definition: a perfect cipher
- $Pr(plaintext = P \mid ciphertext = C) = Pr(plaintext = P)$

November 6, 20

Introduction to Cryptography, Benny Pinkas

Size of key space

- Theorem: For a perfect encryption scheme, the number of keys is at least the size of the message space.
- Proof:
- Consider ciphertext C.
- Must be a possible encryption of any plaintext m.
- But, need a different key per message m.
- \bullet Corollary: Key length of one-time pad is optimal $\ensuremath{\mathfrak{S}}$

November 6, 2005

oduction to Cryptography, Benny Pinkas

Computational security

- We should only worry about polynomial adversaries
- Idea: Generate a string which "looks random" to any polynomial adversary. Use it instead of a OTP.
- Looks random?
- Fraction of bits set to 1 is ≈ 50%
- Longest run of 0's is of length ≈ log(n),
- Is that sufficient?...
- Enumerating a set of statistical tests that the string should pass is not enough.

November 6, 2005

Introduction to Cryptography, Benny Pinkas

Pseudo-random generators

- Pseudo-random generator (PRG)
- G: $\{0,1\}^{|\mathbf{k}|} \Rightarrow \{0,1\}^{|\mathbf{m}|}$ $|\mathbf{k}| < |\mathbf{m}|$, polynomially computable.
- \forall polynomial time adversary D, for s∈_R{0,1}^{|k|}, $u∈_R$ {0,1}^{|m|}, it holds that $Pr(D(G(s)) \neq D(u)$ is negligible
- Polynomial time: running in time t(n) s.t. ∃polynomial p() for which t(n) < p(n) for all large enough n
- Negligible: the difference is a function $\varepsilon(n)$ s.t. \forall polynomials q(), for all large enough n it holds that $\varepsilon(n) < q(n)$

November 6, 20

Introduction to Cryptography, Benny Pinkar

page 7

Computational security - Pseudo-randomness

- Pseudo-random string: no efficient observer can distinguish it from a uniformly random string of the same length
- · Motivation: Indistinguishable objects are equivalent
- The foundation of modern cryptography
- (*t*,ε)-Pseudo-random generator (PRG)
- G: $\{0,1\}^{|k|} \Rightarrow \{0,1\}^{|m|}$ |k| < |m|, polynomially computable.
- \forall adversary D running in time t, for s∈_R{0,1}^{|k|}, u∈_R{0,1}^{|m|}, it holds that Pr(D(G(s)) ≠ D(u) < ε

November 6, 20

Introduction to Cryptography, Benny Pinkas

nage 6

Using a PRG for Encryption

- Key: a (short) random seed s∈{0,1}^{|k|}.
- Message m= m₁,...,m_{lml}.
- Encryption:
- Use the output of the PRG as a one-time pad. Namely,
- Generate $G(s) = g_1, \dots, g_{|m|}$
- Ciphertext C = $g_1 \oplus m_1, ..., g_{|m|} \oplus m_{|m|}$

November 6, 2005

Introduction to Cryptography, Benny Pinkas

---- ^

Proof of Security Polynomially indistinguishable? Enc(m₂) with Enc(m₁) with Enc(m₁) with Enc(m₂) with **PRG PRG** one-time pad one-time pad Same distribution Indistinguishable since otherwise Indistinguishable since otherwise PRG output was distinguishable PRG output was distinguishable from a random string from a random string Distinguishing between (1) and (4), implies distinguishing between (1) and (2), or (2) and (3), or (3) and (4). Introduction to Cryptography, Benny Pinkas

Using a PRG for Encryption: Security

- One time pad:
- ∀ m₁,m₂∈M, ∀c, the probability that c is an encryption of m₁ is equal to the probability that c is an encryption of m₂.
- I.e., \forall m₁,m₂ \in M \forall c, it is impossible to tell whether c is an encryption of m₁ or of m₂.
- Security of pseudo-random encryption:
- Show that ∀ m₁,m₂∈M, no polynomial time adversary can distinguish between the encryptions of m₁ and of m₂.
- Proof by reduction: if one can break the security of the encryption (distinguish between encryptions of m₁ and of m₂), it can also break the security of the PRG (distinguish it from random).

November 6, 2005

Introduction to Cryptography, Benny Pinkas

---- 40

Symmetric systems used in practice

- Are not based on computational problems
- Are (usually) not proven secure by reductions
- · Are designed for specific input and key lengths
- Are very efficient
- Stream ciphers
- Meant to implement a pseudo-random generator
- Usually used for encryption in the same way as OTP
- Examples: A5, RC4, SEAL.
- Require synchronization

November 6, 20

Introduction to Cryptography, Benny Pinkas

age 12

Block Ciphers

- Plaintexts, ciphertexts of fixed length, |m|. Usually, |m|=64 or |m|=128 bits.
- The encryption algorithm E_k is a *permutation* over $\{0,1\}^{|m|}$, and the decryption D_k is its inverse.
- Ideally, use a random permutation. Instead, use a pseudo-random permutation, keyed by a key k.
- Encrypt/decrypt whole blocks of bits
- Might provide better encryption by simultaneously working on a block of bits
- Error propagation: one error in ciphertext affects whole block
- Delay in encryption/decryption
- · Different modes of operation

November 6, 2005

Introduction to Cryptography, Benny Pinkas

nane 13

Properties of ECB

- · Simple and efficient
- Parallel implementation is possible
- Does not conceal plaintext patterns
- Enc(P₁, P₂, P₁, P₃)
- Active attacks are possible (plaintext can be easily manipulated by removing, repeating, or interchanging blocks).

November 6, 20

Introduction to Cryptography, Benny Pinkas

Properties of CBC

- Asynchronous: the receiver can start decrypting from any block in the ciphertext.
- Errors in one *ciphertext* block propagate to the decryption of the next block (but that's it).
- Conceals plaintext patterns (same block -> different ciphertext blocks)
 - But if IV is fixed, CBC does not hide not common prefixes
- No parallel implementation is known
- Plaintext cannot be easily manipulated.
- Standard in most systems: SSL, IPSec, etc.

November 6, 2005

Introduction to Cryptography, Benny Pinkas

Properties of OFB

- Synchronous stream cipher. I.e., the two parties must know s₀ and the current bit position.
- The parties must synchronize the location they are encrypting/decrypting.
- Errors in ciphertext do not propagate
- Implementation:
- Pre-processing is possible
- No parallel implementation known
- Conceals plaintext patterns
- Active attacks (by manipulating the plaintext) are possible

November 6, 2005

duction to Cryptography, Benny Pinkas

age 20

Design of Block Ciphers

- More an art/engineering challenge than science. Based on experience and public scrutiny.
- "Diffusion": each intermediate/output bit affected by many input bits
- "Confusion": avoid structural relationships between bits
- Cascaded (round) design: the encryption algorithm is composed of iterative applications of a simple round
- A common round function: Feistel network

November 6, 2005

Introduction to Cryptography, Benny Pinkas

nane 21

DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
- How many rounds?
- How are the round keys generated?
- What is F?
- DES (Data Encryption Standard)
- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).
- Criticized for unpublished design *decisions* (designers did not want to disclose differential cryptanalysis).
- Linear cryptanalysis: about 240 known plaintexts

November 6, 20

Introduction to Cryptography, Benny Pinkas

age 23

Feistel Networks

- · Encryption:
- Input: $P = L_{i-1} | R_{i-1} | L_{i-1} | = |R_{i-1}|$
- $L_{i} = R_{i-1}$ $- R_{i} = L_{i-1} \oplus F(K_{i}, R_{i-1})$
- K_i = L_{i-1} ⊕ F(K_i • Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible).
- The same code/circuit, with keys is reverse order, can be used for decryption.
- Theoretical result [LubRac]: If F is a pseudo-random function then 4 rounds give a pseudorandom permutation

Introduction to Cryptography, Benny Pinkas

DES diagram

Meet-in-the-middle attacks

- Meet-in-the-middle attack
- $-c = \mathsf{E}_{\mathsf{k2}}(\mathsf{E}_{\mathsf{k1}}(\mathsf{m}))$
- $D_{k2} (c) = E_{k1}(m)$
- · The attack:
- Input: (m,c) for which $c = E_{k2}(E_{k1}(m))$
- For every possible value of k_1 , generate and store $E_{k1}(m)$
- For every possible value of k_2 , check if $D_{k2}(c)$ is in the table
- Might obtain several options for (k₁,k₂). Check them or repeat the process again with a new (m,c) pair.
- The attack is applicable to any iterated cipher

November 6, 200

ntroduction to Cryptography, Benny Pinkas

age 27

Double DES

• DES is out of date due to brute force attacks on its short key (56 bits)

· Why not apply DES twice with two keys?

- Double DES: DES $_{k1\ k2} = E_{k2}(E_{k1}(m))$

- Key length: 112 bits

• But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.

 Compared to brute a force attack, requiring 2¹¹² operations and O(1) storage.

November 6, 200

Introduction to Cryptography, Benny Pinkas

---- 00

Triple DES

- 3DES $_{k1,k2} = E_{k1}(D_{k2}(E_{k1}(m)))$
- Why use Enc(Dec(Enc()))?
- Backward compatibility: setting k₁=k₂ is compatible with single key DES
- Only two keys
- Effective key length is 112 bits
- Why not use three keys? There is a meet-in-the-middle attack with 2¹¹² operations
- Provides good security. Widely used. Less efficient.

November 6, 2005

Introduction to Cryptography, Benny Pinkas

AES (Advanced Encryption Standard)

- Design initiated in 1997 by NIST
- Goals: improve security and software efficiency of DES
- 15 submissions, several rounds of public analysis
- The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

November 6, 2005

Introduction to Cryptography, Benny Pinkas

nane 29

What we've learned today

- Perfect security implies |M| ≤ |K|
- Computational security
- Pseudo-randomness, Pseudo-random generator
- Block ciphers
- DES, AES
- Meet in the middle attack

November 6, 2005

Introduction to Cryptography, Benny Pinkas