
1

page 1January 15, 2006 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 11

Factoring, computing discrete logs
SSL / TLS

Benny Pinkas

page 2January 15, 2006 Introduction to Cryptography, Benny Pinkas

Integer factorization

• The RSA and Rabin cryptosystems use a modulus N
and are insecure if it is possible to factor N.

• Factorization: given N find all prime factors of N. 

• Factoring is the search problem corresponding to the 
primality testing decision problem.
– Primality testing is easy
– What about factoring? 

page 3January 15, 2006 Introduction to Cryptography, Benny Pinkas

Pollard’s Rho method

• Factoring N

• Trivial algorithm: trial division by all integers < N1/2. 

• Pollard’s rho method:
– O(N1/4) computation. 
– O(1) memory.
– A heuristic algorithm.

page 4January 15, 2006 Introduction to Cryptography, Benny Pinkas

Pollard’s rho method

1. i=1; x1∈[1,n-1]; y=x1;
2. i = i+1.

3. xi = ((xi-1)
2 - 1) mod n.

4. d = gcd(y-xi, n)

5. If d>1 then output d, and stop.

6. If i is a power of 2, then y=xi
7. Goto line 2. 

• xi is a series of numbers in 0..n-1.
• y takes  the values of x1, x2, x4, x8, …, x2^i,…
• If (y-xi) = 0 mod p, then most likely gcd(y-xi,n)=p.

Always a factor of n



2

page 5January 15, 2006 Introduction to Cryptography, Benny Pinkas

Pollard’s rho method

• The running time is not guaranteed, but is expected to 
be sqrt(p) ≤ n1/4. 

• The sequence xi is in 1..n.
– xi depends only on xi-1 (xi = ((xi-1)2 - 1) mod n)
– The sequence is shaped like the letter Rho.
– Assume that fn(x)=x2-1 mod n behaves like a random 

function. Then the tail and the circle are about sqrt(n) long.
• Let x’i = xi  mod p, where p factors n.
• x’i+1 = xi+1  mod p = (xi

2-1 mod n) mod p  =  xi
2-1 mod p  

= (xi’)2-1 mod p 
• The sequence x’i therefore follows xi, but is in 0..p-1. 

Therefore, its tail and circle are about sqrt(p) long.

page 6January 15, 2006 Introduction to Cryptography, Benny Pinkas

Pollard’s rho method

• The sequence x’i:
– Let t be the first repeated value in x’i
– Let u be the length of the cycle
– x’t+i = x’t+i+u
– Therefore xt+i = xt+i+u mod p
– gcd(xt+i - xt+i+u, n) = cp.

• Once the algorithm saves y=xj for j>t, it is on the circle. 
If the circle length u is smaller than j, the algorithm 
computes gcd(xj+u-xj, n) and factors n.

• The algorithm fails if
– The cycle and tail are long -> running time is slow. 
– The cycle and tail are of the same length for both p and q.

page 7January 15, 2006 Introduction to Cryptography, Benny Pinkas

Modern factoring algorithms

• The number-theoretic running time function Ln(a,c)

– For a=0, the running time is polynomial in ln(n).
– For a=1, the running time is exponential in ln(n).
– For 0<a<1, the running time is subexponential. 

• Factoring algorithms
– Quadratic field sieve: Ln(1/2, 1)
– General number field sieve: Ln(1/3, 1.9323)
– Elliptic curve method Lp(1/2, 1.41)  (preferable only if 

p<<sqrt(n) )

aa nnc
n ecaL

−

=
1)ln(ln)(ln),(

page 8January 15, 2006 Introduction to Cryptography, Benny Pinkas

Modulus size recommendations

• Factoring algorithms are run on massively distributed 
networks of computers (running in their idle time).

• RSA published a list of factoring challenges. 
• A 512 bit challenge was factored in 1999.
• The largest factored number n=pq. 

– 640 bits (RSA-640)
– Factored on November 2, 2005 using the NFS

• Typical current choices:
– At least 768-bit RSA moduli should be used
– For better security, 1024-bit RSA moduli are used
– For more sensitive applications, key lengths of 2048 bits 

(or higher) are used



3

page 9January 15, 2006 Introduction to Cryptography, Benny Pinkas

RSA with a modulus with more factors

• The best factoring algorithms:
– General number field sieve (NFS): Ln(1/3, 1.9323)
– Elliptic curve method Lp(1/2, 1.41)

• If n=pq, where |p|=|q|, then the NFS is faster.
– Common parameters: |p|=|q|=512 bits
– Factoring using the NFS is infeasible, but more likely than 

factoring using the elliptic curve method.
• How about using N=pqr, where |p|=|q|=|r|=512?

– The factors are of the same length, so factoring using the 
elliptic curve method is still infeasible.

– The NFS method has to work on a larger modulus
– Decryption time is slower. 

page 10January 15, 2006 Introduction to Cryptography, Benny Pinkas

RSA for paranoids

• Suppose N=pq, |p|=500 bits, |q|=4500 bits.
• Factoring is extremely hard.
• Decryption is also very slow. (Encryption is done using a 

short exponent, so it is pretty efficient.)

• However, in most applications RSA is used to transfer 
session keys, which are rather short.

• Assume message length is < 500 bits.
– In the decryption process, it is only required to decrypt the 

message modulo p. (As, or more, efficient, as a 1024 bit n.)
– Encryption must use a slightly longer e. Say, e=20.

page 11January 15, 2006 Introduction to Cryptography, Benny Pinkas

Discrete log algorithms

• Input: (g,y) in a finite group G. Output: x s.t. gx = y in G. 
• Generic vs. special purpose algorithms: generic algorithms do not 

exploit the representation of group elements. 

• Algorithms
– Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running 

time and memory. 
– Pollard’s rho method: Generic. |G| must be known. Sqrt(|G|) running time 

and O(1) memory. 
– No generic algorithm can do better than O(sqrt(q)), where q is the largest 

prime factor of |G|
– Pohlig-Hellman: Generic. |G| and its factorization must be known. 

O(sqrt(q) ln q), where q is largest prime factor of |G|.
– Therefore for Z*p, p-1 must have a large prime factor. 
– Index calculus algorithm for Z*p: L(1/2, c)
– Number field size for Z*p: L(1/3, 1.923)

page 12January 15, 2006 Introduction to Cryptography, Benny Pinkas

Baby-step giant-step DL algorithm

• Let t=sqrt(|G|).
• x can be represented as x=ut-v, where u,v < sqrt(|G|).

• The algorithm:
– Giant step: compute the pairs (j, g j·t), for 0 ≤ j ≤ t. Store in 

a table keyed by g j·t.
– Baby step: compute y·gi for i=0,1,2…, until you hit an item 

(j, g j·t) in the table. x = jt - i.

• Memory and running time are O(sqrt|G|).



4

page 13January 15, 2006 Introduction to Cryptography, Benny Pinkas

Baby-step giant-step DL algorithm

page 14January 15, 2006 Introduction to Cryptography, Benny Pinkas

SSL/TLS

• General structure of secure HTTP connections
– To connect to a secure web site using SSL or TLS, we 

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key 
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to 
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.

page 15January 15, 2006 Introduction to Cryptography, Benny Pinkas

SSL/TLS

• SSL (Secure Sockets Layer)
– SSL v2

• Released in 1995 with Netscape 1.1

• A flaw found in the key generation algorithm

– SSL v3
• Improved, released in 1996

• Public design process

• TLS (Transport Layer Security)
– IETF standard, RFC 2246

• Common browsers support all these protocols

page 16January 15, 2006 Introduction to Cryptography, Benny Pinkas

SSL Protocol Stack

• SSL/TLS operates over TCP, which ensures reliable 
transport.

• Supports any application protocol (usually used with 
http).



5

page 17January 15, 2006 Introduction to Cryptography, Benny Pinkas

SSL/TLS Overview

• Handshake Protocol - establishes a session
– Agreement on algorithms and security parameters
– Identity authentication
– Agreement on a key
– Report error conditions to each other

• Record Protocol - Secures the transferred data
– Message encryption and authentication

• Alert Protocol – Error notification (including “fatal”
errors).

• Change Cipher Protocol – Activates the pending crypto 
suite

page 18January 15, 2006 Introduction to Cryptography, Benny Pinkas

Simplified SSL Handshake

Client Server

I want to talk, ciphers I support, RC

Certificate (PKServer), cipher I choose, RS

{S}PKserver , {keyed hash of handshake message}

{keyed hash of handshake message}

Data protected by keys derived from K

K= f (S,RC,RS) K= f (S,RC,RS)
compute compute

page 19January 15, 2006 Introduction to Cryptography, Benny Pinkas

A typical run of a TLS protocol

• C ⇒ S
– ClientHello.protocol.version = “TLS version 1.0”
– ClientHello.random = TC, NC

– ClientHello.session_id = “NULL”
– ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”

– ClientHello.compression_method = “NULL”
• S ⇒ C

– ServerHello.protocol.version = “TLS version 1.0”
– ServerHello.random = TS, NS

– ServerHello.session_id = “1234”
– ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”

– ServerHello.compression_method = “NULL”
– ServerCertificate = pointer to server’s certificate
– ServerHelloDone

page 20January 15, 2006 Introduction to Cryptography, Benny Pinkas

Some additional  issues

• More on S ⇒ C
– The ServerHello message can also contain Certificate 

Request Message
– I.e., server may request client to send its certificate 
– Two fields: certificate type and acceptable CAs

• Negotiating crypto suites
– The crypto suite defines the encryption and authentication 

algorithms and the key lengths to be used. 
– ~30 predefined standard crypto suites
– Selection (SSL v3): Client proposes a set of suites. Server 

selects one. 



6

page 21January 15, 2006 Introduction to Cryptography, Benny Pinkas

Key generation

• Key computation:
– The key is generated in two steps:
– pre-master secret S is exchanged during 

handshake
– master secret K is a 48 byte value calculated 

using pre-master secret and the random nonces
• Session vs. Connection: a session is relatively long 

lived. Multiple TCP connections can be supported 
under the same SSL/TSL connection.

• For each connection: 6 keys are generated from the 
master secret K and from the nonces. (For each 
direction: encryption key, authentication key, IV.)

page 22January 15, 2006 Introduction to Cryptography, Benny Pinkas

TLS Record Protocol


