Introduction to Cryptography Lecture 11

Factoring, computing discrete logs SSL / TLS

Benny Pinkas

Introduction to Cryptography, Benny Pinkas

Pollard's Rho method

- Factoring N
- Trivial algorithm: trial division by all integers $< N^{1/2}$.
- Pollard's rho method:
- $O(N^{1/4})$ computation.
- O(1) memory.
- A heuristic algorithm.

Integer factorization

- The RSA and Rabin cryptosystems use a modulus N and are insecure if it is possible to factor N.
- Factorization: given N find all prime factors of N.
- Factoring is the search problem corresponding to the primality testing decision problem.
- Primality testing is easy
- What about factoring?

Introduction to Cryptography, Benny Pinkas

Pollard's rho method

```
1. i=1; x_1 \in [1, n-1]; y=x_1;
```

2. i = i+1.

3. $x_i = ((x_{i-1})^2 - 1) \mod n$.

4. $d = gcd(y-x_i, n)$ Always a factor of n

5. If d>1 then output d, and stop.

6. If i is a power of 2, then $y=x_1$

7. Goto line 2.

• x_i is a series of numbers in 0..n-1.

• y takes the values of x_1 , x_2 , x_4 , x_8 , ..., $x_{2 \wedge j}$,...

• If $(y-x_i) = 0 \mod p$, then most likely $gcd(y-x_i, n) = p$.

Introduction to Cryptography, Benny Pinkas

Pollard's rho method

- The running time is not guaranteed, but is expected to be $\operatorname{sqrt}(p) \le n^{1/4}$.
- The sequence x_i is in 1..n.
- $-x_i$ depends only on x_{i-1} $(x_i = ((x_{i-1})^2 1) \mod n)$
- The sequence is shaped like the letter Rho.
- Assume that $f_n(x)=x^2-1 \mod n$ behaves like a random function. Then the tail and the circle are about sqrt(n) long.
- Let $x'_i = x_i \mod p$, where p factors n.
- $x'_{i+1} = x_{i+1} \mod p = (x_i^2 1 \mod n) \mod p = x_i^2 1 \mod p$ = $(x_i')^2 - 1 \mod p$
- The sequence x'_i therefore follows x_i, but is in 0..p-1.
 Therefore, its tail and circle are about sqrt(p) long.

January 15, 2006

Introduction to Cryptography, Benny Pinkas

Modern factoring algorithms

• The number-theoretic running time function $L_n(a,c)$

$$L_n(a,c) = e^{c(\ln n)^a (\ln \ln n)^{1-a}}$$

- For a=0, the running time is polynomial in ln(n).
- For a=1, the running time is exponential in ln(n).
- For 0<a<1, the running time is subexponential.
- · Factoring algorithms
- Quadratic field sieve: L_n(1/2, 1)
- General number field sieve: L_n(1/3, 1.9323)
- Elliptic curve method L_p(1/2, 1.41) (preferable only if p<<sqrt(n))

January 15, 200

Introduction to Cryptography, Benny Pinkas

page 7

Pollard's rho method

- The sequence x';:
- Let t be the first repeated value in x',
- Let *u* be the length of the cycle
- $X'_{t+i} = X'_{t+i+u}$
- Therefore $x_{t+i} = x_{t+i+t} \mod p$
- $gcd(x_{t+i} x_{t+i+u}, n) = cp.$
- Once the algorithm saves $y=x_j$ for j>t, it is on the circle. If the circle length u is smaller than j, the algorithm computes $gcd(x_{i+u}-x_j, n)$ and factors n.
- The algorithm fails if
- The cycle and tail are long -> running time is slow.
- The cycle and tail are of the same length for both p and q.

January 15, 200

Introduction to Cryptography, Benny Pinkas

Modulus size recommendations

- Factoring algorithms are run on massively distributed networks of computers (running in their idle time).
- RSA published a list of factoring challenges.
- A 512 bit challenge was factored in 1999.
- The largest factored number *n*=*pq*.
- 640 bits (RSA-640)
- Factored on November 2, 2005 using the NFS
- Typical current choices:
- At least 768-bit RSA moduli should be used
- For better security, 1024-bit RSA moduli are used
- For more sensitive applications, key lengths of 2048 bits (or higher) are used

anuary 15, 2006

Introduction to Cryptography, Benny Pinkas

page o

RSA with a modulus with more factors

- The best factoring algorithms:
- General number field sieve (NFS): L_n(1/3, 1.9323)
- Elliptic curve method L_n(1/2, 1.41)
- If n=pq, where |p|=|q|, then the NFS is faster.
- Common parameters: |p|=|q|=512 bits
- Factoring using the NFS is infeasible, but more likely than factoring using the elliptic curve method.
- How about using N=pqr, where |p|=|q|=|r|=512?
- The factors are of the same length, so factoring using the elliptic curve method is still infeasible.
- The NFS method has to work on a larger modulus
- Decryption time is slower.

January 15, 2006

Introduction to Cryptography, Benny Pinkas

Discrete log algorithms

- Input: (q, y) in a finite group G. Output: x s.t. $q^x = y$ in G.
- Generic vs. special purpose algorithms: generic algorithms do not exploit the representation of group elements.
- Algorithms
- Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running time and memory.
- Pollard's rho method: Generic. |G| must be known. Sqrt(|G|) running time and O(1) memory.
- No generic algorithm can do better than O(sqrt(q)), where q is the largest prime factor of |G|
- Pohlig-Hellman: Generic. |G| and its factorization must be known.
 O(sqrt(q) In q), where q is largest prime factor of |G|.
- Therefore for Z*_p, p-1 must have a large prime factor.
- Index calculus algorithm for Z*_p: L(1/2, c)
- Number field size for Z*_p: L(1/3, 1.923)

January 15, 200

Introduction to Cryptography, Benny Pinkas

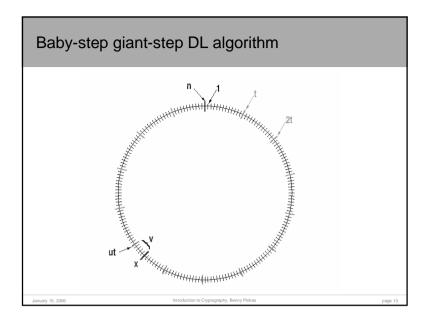
page 11

RSA for paranoids

- Suppose N=pq, |p|=500 bits, |q|=4500 bits.
- · Factoring is extremely hard.
- Decryption is also very slow. (Encryption is done using a short exponent, so it is pretty efficient.)
- However, in most applications RSA is used to transfer session keys, which are rather short.
- Assume message length is < 500 bits.
- In the decryption process, it is only required to decrypt the message modulo p. (As, or more, efficient, as a 1024 bit n.)
- Encryption must use a slightly longer e. Say, e=20.

January 15, 200

Introduction to Cryptography, Benny Pinkas


Baby-step giant-step DL algorithm

- Let t=sqrt(|G|).
- x can be represented as x=ut-v, where u,v < sqrt(|G|).
- The algorithm:
- Giant step: compute the pairs $(j, g^{j \cdot t})$, for $0 \le j \le t$. Store in a table keyed by $g^{j \cdot t}$.
- Baby step: compute $y \cdot g^i$ for i=0,1,2..., until you hit an item $(j, g^{j \cdot t})$ in the table. x = jt i.
- Memory and running time are O(sqrt|G|).

lanuary 15, 2006

oduction to Cryptography, Benny Pinkas

age 12

SSL/TLS

- SSL (Secure Sockets Layer)
- SSL v2
- Released in 1995 with Netscape 1.1
- A flaw found in the key generation algorithm
- SSL v3
- Improved, released in 1996
- Public design process
- TLS (Transport Layer Security)
- IETF standard, RFC 2246
- Common browsers support all these protocols

January 15, 200

ntroduction to Cryptography, Benny Pinkas

page 15

SSL/TLS

- General structure of secure HTTP connections
- To connect to a secure web site using SSL or TLS, we send an https:// command
- The web site sends back a public key⁽¹⁾, and a certificate.
- Our browser
- Checks that the certificate belongs to the url we're visiting
- · Checks the expiration date
- Checks that the certificate is signed by a CA whose public key is known to the browser
- · Checks the signature
- If everything is fine, it chooses a session key and sends it to the server encrypted with RSA using the server's public key

(1) This is a very simplified version of the actual protocol.

January 15, 2006

troduction to Cryptography, Benny Pinkas

SSL Protocol Stack

- SSL/TLS operates over TCP, which ensures reliable transport.
- Supports any application protocol (usually used with http).

SSL Change Cipher Spec Protocol SSL Record Protocol TCP							
TCP	Handshake	SSL Change Cipher Spec		нттр	Telnet	•••	
	SSL Record Protocol						
IP	ТСР						
	IP						

106 Introduction to Cryptography, Benny Pinkas

SSL/TLS Overview

- · Handshake Protocol establishes a session
- Agreement on algorithms and security parameters
- Identity authentication
- Agreement on a key
- Report error conditions to each other
- Record Protocol Secures the transferred data
- Message encryption and authentication
- Alert Protocol Error notification (including "fatal" errors).
- Change Cipher Protocol Activates the pending crypto suite

January 15, 2006

Introduction to Cryptography, Benny Pinkas

---- 47

A typical run of a TLS protocol

- $C \Rightarrow S$
- ClientHello.protocol.version = "TLS version 1.0"
- ClientHello.random = T_C , N_C
- ClientHello.session_id = "NULL"
- ClientHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
- $-\ Client Hello. compression_method = "NULL"$
- $S \Rightarrow C$
- ServerHello.protocol.version = "TLS version 1.0"
- ServerHello.random = T_S, N_S
- ServerHello.session id = "1234"
- ServerHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
- ServerHello.compression_method = "NULL"
- ServerCertificate = pointer to server's certificate

January 15, 2006 Intro

page 19

Client Server I want to talk, ciphers I support, R_C Certificate (PK_{Server}) , cipher I choose, R_S compute $K = f(S, R_C, R_S)$ Server $\{S\}_{PKserver}, \{\text{keyed hash of handshake message}\}$ $\{K = f(S, R_C, R_S)\}$ Data protected by keys derived from K

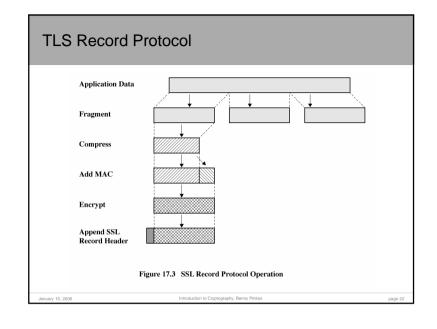
Introduction to Cryptography, Benny Pinkas

Some additional issues

- More on $S \Rightarrow C$
- The ServerHello message can also contain Certificate Request Message
- I.e., server may request client to send its certificate
- Two fields: certificate type and acceptable CAs
- Negotiating crypto suites
- The crypto suite defines the encryption and authentication algorithms and the key lengths to be used.
- ~30 predefined standard crypto suites
- Selection (SSL v3): Client proposes a set of suites. Server selects one.

lanuary 15, 2006

Introduction to Cryptography, Benny Pinkas


190 ZU

Key generation

- Key computation:
- The key is generated in two steps:
- pre-master secret S is exchanged during handshake
- master secret K is a 48 byte value calculated using pre-master secret and the random nonces
- Session vs. Connection: a session is relatively long lived. Multiple TCP connections can be supported under the same SSL/TSL connection.
- For each connection: 6 keys are generated from the master secret *K* and from the nonces. (For each direction: encryption key, authentication key, IV.)

ary 15, 2006 Introduction to Cryptography, Benny Pinkas

page 21

