
1

page 1January 8, 2006 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 10

Public Key Infrastructure (PKI),
hash chains, hash trees.

Primality testing.

Benny Pinkas

2

page 2January 8, 2006 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• How can users verify that a public key PKv corresponds
to user v?

• A Certificate Authority (CA) is trusted party.
• All users have a copy of the public key of the CA
• The CA signs Alice’s digital certificate. A simplified

certificate is of the form (Alice, Alice’s public key).
• The CA can work offline.
• When a user wants to communicate with Alice, it must

obtain her certificate. Either directly from her, frm the
CA, or from a public repository.

3

page 3January 8, 2006 Introduction to Cryptography, Benny Pinkas

4

page 4January 8, 2006 Introduction to Cryptography, Benny Pinkas

5

page 5January 8, 2006 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
• Monopoly + delegated CAs:

– top level CA can issue certificates for other CAs
– Certificates of the form

• [(Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)TOP-CA]

Root CA

CA1 CA2

CA3

Alice

Bob

6

page 6January 8, 2006 Introduction to Cryptography, Benny Pinkas

Revocation

• Revocation is a key component of PKI
– Each certificate has an expiry date
– But certificates might get stolen, employees might leave

companies, etc.
– Certificates might therefore need to be revoked before

their expiry date
– New problem: before using a certificate we must verify that

it has not been revoked
• Often the most costly aspect of running a large scale public

key infrastructure (PKI)

7

page 7January 8, 2006 Introduction to Cryptography, Benny Pinkas

Certificate Revocation Lists (CRLs)

• A revocation agency (RA) issues a list of revoked
certificates (i.e., “bad” certificates)
– The list is updated and published regularly (e.g. daily)
– Before trusting a certificate, users must consult the most

recent CRL in addition to checking the expiry date.
• Advantages: simple.
• Drawbacks:

– Scalability. CRLs can be huge. There is no short proof that
a certificate is valid.

– There is a vulnerability windows between a compromise of
certificate and the next publication of a CRL.

– Need a reliable way of distributing CRLs.
• Improving scalability using “delta CRLs”: a CRL that only

lists certificates which were revoked since the issuance of a
specific, previously issued CRL.

8

page 8January 8, 2006 Introduction to Cryptography, Benny Pinkas

Explicit revocation: OCSP

• OCSP (Online Certificate Status Protocol)
– RFC 2560, June 1999.

• OCSP can be used in place, or in addition, to CRLs
• Clients send a request for certificate status information.

– An OCSP server sends back a response of "current",
"expired," or "unknown“.

– The response is signed (by the CA, or a Trusted
Responder, or an Authorized Responder certified by the
CA).

• Provides instantaneous status of certificates
– Overcomes the chief limitation of CRL: the fact that

updates must be frequently downloaded to keep the list
current

9

page 9January 8, 2006 Introduction to Cryptography, Benny Pinkas

Certificate Revocation System (CRS)

• Certificate Revocation System (Micali’96)
• Uses a hash chain

– The certificate includes Y365 = f 365(Y0). f is one-way.
– On day d,

• If the certificate is valid, then Y365-d = f 365-d(Y0) is sent by the
CA to the certificate holder or to a directory.

• The certificate receiver uses the daily value (f 365-d(Y0)) to
verify that the certificate is still valid. (how?)

• Advantage: A short, individual, proof per certificate.

• Disadvantage: Daily overhead, even when a cert is valid.

10

page 10January 8, 2006 Introduction to Cryptography, Benny Pinkas

Merkle Hash Tree

• A method of committing to (by hashing together) n
values, x1,…,xn, such that
– The result is a single hash value
– For any xi, it is possible to prove that it appeared in the

original list, using a proof of length O(log n).

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

11

page 11January 8, 2006 Introduction to Cryptography, Benny Pinkas

Merkle Hash Tree

• H is a collision intractable hash function
• Any change to a leaf results in a change to the root
• To sign the set of values it is sufficient to sign the root

(a single signature instead of n).
• How do we verify that an element appeared in the

signed set?

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

12

page 12January 8, 2006 Introduction to Cryptography, Benny Pinkas

Verifying that a appears in the signed set

• Provide a’s leaf, and the siblings of the nodes in the
path from a to the root. (O(log n) values)

• The verifier can use H to compute the values of the
nodes in the path from the leaf to the root.

• It then compares the computed root to the signed value

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)

13

page 13January 8, 2006 Introduction to Cryptography, Benny Pinkas

Using hash trees to improve the overhead of CRS

• Originally (for a year long certificate)
– the certificate includes f 365(Y0)
– On day d, certificate holder obtains f 365-d(Y0)
– The certificate receiver computes f 365(Y0) from f 365-d(Y0)

by invoking f() d times.
• Slight improvement:

– The CA assigns a different leaf for every day, constructs a
hash tree, and signs the root.

– On day d, it releases node d and the siblings of the path
from it to the root.

– This is the proof that the certificate is valid on day d
– The overhead of verification is O(log 365).

14

page 14January 8, 2006 Introduction to Cryptography, Benny Pinkas

Certificate Revocation Tree (CRT) [Kocher]

• A CRT is a hash tree with leaves corresponding to
statements about ranges of certificates
– Statements describe regions of certificate ids, in which

only the smallest id is revoked.
• For example, a leaf might read: “if 100 ≤ id <234, then cert is

revoked iff id=100”.

– Each certificate matches exactly one statement.
– The statements are the leaves of a signed hash tree,

ordered according to the ranges of certificate values.
– To examine the state of a certificate we retrieve the

statement for the corresponding region.
– A single hash tree is used for all certs.

15

page 15January 8, 2006 Introduction to Cryptography, Benny Pinkas

Certificate Revocation Tree (CRT)

– Preferred operation mode:
• Every day the CA constructs an updated tree.
• The CA signs a statement including the root of the tree and

the date.
• It is Alice’s responsibility to retrieve the leaf which shows that

her certificate is valid, the route from this leaf to the root, and
the CA’s signature of the root.

• To prove the validity of her cert, Alice sends this information.
• The receiver verifies the value in the leaf, the route to the

tree, and the signature.

– Advantage:
• a short proof for the status of a certificate.
• The CA does not have to handle individual requests.

– Drawback: the entire hash tree must be updated daily.

16

page 16January 8, 2006 Introduction to Cryptography, Benny Pinkas

Primality testing

• Why do we need primality testing?
– Essentially all public key cryptographic algorithms use

large prime numbers
– We therefore need an algorithm for prime number

generation
– Suppose we have an algorithm “PrimalityTest” with a

binary output.
– We can generate random primes as follows

GeneratePrime(a,b)

1. Choose random number x ∈ [a,b]

2. If PrimalityTest(x) then output “x is
prime”; otherwise goto line 1.

17

page 17January 8, 2006 Introduction to Cryptography, Benny Pinkas

Density of prime numbers

• How long will GeneratePrime run?
• Let π(n) specify number of primes ≤ n.

• Prime number theorem:
– π(n) goes to n / ln n as n goes to infinity.

• Pretty accurate even for small n (e.g. for n=230 it is off
by 6%).

• Corollary: a random number in [1,n] is prime with
probability 1/ln n. (e.g. for n=2512, probability is 1/355).
– The GeneratePrime algorithm is expected to take ln n

rounds.
– If we skip even numbers, we cut running time by ½.

18

page 18January 8, 2006 Introduction to Cryptography, Benny Pinkas

Primality testing

• Primality testing is a decision problem: “is x prime or
composite?”

• Different than the search problem “find all prime factors
of x”.

• In this case, the decision problem has an efficient
solution while the search problem does not.

• First algorithm: Trial division
– Try to divide x by every prime integer smaller than √x

(sqrt(x)).
– Infeasible for large x.

19

page 19January 8, 2006 Introduction to Cryptography, Benny Pinkas

Fermat’s test

• Fermat’s theorem: if p is prime then for all 1 ≤ a < p it
holds that ap-1 = 1 mod p.

• If we can find an a s.t ax-1 ≠1 mod x, x is surely
composite.
– Surprisingly, the converse is almost always true, and for a

large percentage of the choices of a.
– Suppose we check only for a=2.

• If 2x-1 != 1 mod x

– Then return COMPOSITE /for sure

– Otherwise, return PRIME /we hope

– How accurate is this program?

20

page 20January 8, 2006 Introduction to Cryptography, Benny Pinkas

Fermat’s test

• Surprisingly, this test is almost always right
– Wrong for only 22 values of x smaller than 100,000
– Probability of error goes down to 0 as x grows

• For |x|=512 bits, probability of error is < 10-20 ≈ 2-66

• For |x|=1024 bits, probability of error is < 10-41 ≈ 2-136

• The test is therefore sufficient for randomly chosen
candidate primes

• But we need a better test if x is not chosen at random
• Cannot eliminate errors by checking for bases ≠ 2

– x is a Charmichael number if it is composite, but ax-1 = 1
mod x for all 1 ≤ a < x.

– There are infinitely many Charmichael numbers
– But they are rare

21

page 21January 8, 2006 Introduction to Cryptography, Benny Pinkas

Miller-Rabin test

• Works for all numbers (even Charmichael numbers).
– Checks several randomly chosen bases a
– If it finds out that ax-1 = 1 mod x, it checks whether the

process found a nontrivial root of 1 (≠ 1,-1). If so, it
outputs COMPOSITE.

The Miller-Rabin test:
1. Write x-1=2cr for an odd r. set comp=0.
2. For i=1 to T

• Pick random a ∈ [1,x-1]. If gcd(a,x)> 1
set comp=1.

• Compute y0=a
r mod x, yi=(yi-1)

2 mod x for
i=1..c. If yc≠1, or ∃i, yi=1, yi-1≠±1, set
comp=1.

3. If comp=1 return PRIME, else COMPOSITE.

22

page 22January 8, 2006 Introduction to Cryptography, Benny Pinkas

Miller-Rabin test

• Possible values for the sequence y0=ar, y1=a2r… yc=ax-1
.

• <…,d>, where d≠1, decide COMPOSITE.

• <1,1,…,1>, decide PRIME.

• <..,-1,1,..,1>, decide PRIME.

• <…,d,1,…,1>, where d≠±1, decide COMPOSITE.

– For a composite number x, we denote a base a as a non-
witness if it results in the output being “PRIME”.

• Lemma: if x is an odd composite number then the
number of non-witnesses is at most x/4.

• Therefore, for any odd integer x, T trials give the wrong
answer with probability < (1/4)T.

