Introduction to Cryptography

Lecture 1

Benny Pinkas




- Grade
- Exam 75%
— Homework 25% (might include programming)

- Office hours: Tuesday, 11-12.
« Email: benny@cs.haifa.ac.ll

- Web page:
http://www.pinkas.net/courses/itc/2005/index.html

- Goal: Learn the basics of modern cryptography
- Method: introductory, applied, precise.
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« Textbook:

— Cryptography Theory and Practice, Second edition by D.
Stinson. (Also, a version in nay by the Open University!).

 Optional:
— Handbook of Applied Cryptography, by A. Menezes, P.
Van Oorschot, S. Vanstone. (Free!)

— Introduction to Cryptography Applied to Secure
Communication and Commerce, by Amir Herzberg.
(Free!)

— Applied Cryptography, by B. Schneier.
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In the Library

« In the “reserved books” section:

- Four copies of
— Cryptography :theory and practice / Douglas R. Stinson

— Introduction to cryptography :principles and applications
/Hans Delfs, Helmut Knebl

— Foundations of cryptography / Oded Goldreich

- One copy of

-~ Handbook of applied cryptography / Alfred J. Menezes et
al. (also available online)

— Applied cryptography / Bruce Schneier




« Course Outline

— Data secrecy: encryption
« Symmetric encryption

« Asymmetric (public key) encryption
— Data Integrity: authentication, digital signatures.

— Required background in number theory
— Cryptographic protocols
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- Message space {m} )

- Encryption key k,, decryption key k, Define the
- Key generation algorithm y encryption
- Encryption function E system

- Decryption function D )

- For every message m

- Do (Ep(m))=m

— l.e., the decryption of the encryption of mis m
- Symmetric encryption k = k, =k,
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(1) No adversary can determine m
or, even better,
(2) No adversary can determine any information about m

- Suppose m = “attack on Sunday, October 17, 2004".

- The adversary can at most learn that
- m = "attack on S**day, Oct**er 17, 2004”

m = lkkkkkk k% *u***** kkkkkkk  kkk kkkkV

- Here, goal (1) is satisfied, but not goal (2)
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Adversarial Model

- Adversary Knows encryption and decryption algorithms
E and D, and message space.

- Kerckhoff's Principle (1883):
— The only thing Eve does not know Is the secret key k
— The design is public
- Allows public scrutiny of the design

« No need to replace the system if the design is exposed -> no
need to keep the design secret

- Same design can be used for multiple applications
« Focus on securing the key

- Examples
« Security by obscurity, Intel's HDCP ®

- DES, AES, SSL ©
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Adversarial Power

. Types of attacks:
— Ciphertext only attack — ciphertext known to the adversary
(eavesdropping)

— Known plaintext attack — plaintext and ciphertext are known
to the adversary

— Chosen plaintext attack — the adversary can choose the
plaintext and obtain its encryption (e.g. he has access to the
encryption system)

— Chosen ciphertext attack — the adversary can choose the
ciphertext and obtain its decryption

- Assume restrictions on the adversary’s capabilities, but
not that it is using specific attacks or strategies.
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- German cipher in WW I
- Kerckhoff’s principle

- Known plaintext attack
- (somewhat) chosen plaintext attack
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- A shift cipher

- Plaintext: “ATTACK AT DAWN
- Ciphertext: “DWWDFN DW GDZQ

- Key: k €, {0,25}. (In this example k=3)

- More formally:

- Key: k €5{0...25}, chosen at random.

- Message space: English text (i.e., {0...25} Iml)

— Algorithm: ciphertext letter = plaintext letter + k mod 25
- Kerckhoff’s principle

- Not a good idea
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Brute Force Attacks

- Brute force attack : adversary tests all key space and
checks which key decrypts the message

- Caesar cipher: |key space| = 26
- We need a large key space

- Usually, the key is a bit string chosen uniformly at
random from {0,1}X. Implying 2/l equiprobable keys.

- How long should k be?

- The adversary should not be able to do 2kl decryption
trials
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Adversary’s computation power

. Theoretically
— Adversary can perform poly(|k|) computation
- Key space = 2/
- Practically
— |K| = 64 is too short
— |k| = 80 starts to be reasonable

- Why? (what can be done by 1000 computers in a year?)
« 25 =220 (ops per second)

. x 220 (seconds in two weeks)
. x 2° (= fortnights in a year) (might invest more than a year..)
. x 210 (computers in parallel)

. All this, assuming that the adversary cannot do better
than a brute force attack
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Monoalphabetic Substitution cipher

O
T
5y
%
_I
C
<
=
X
<
N

BICIDE|FIGIH|I|J|K|L{MJN
AHP|IOIGIZIQW|B|T|S|FJL|R|C

>

Q
Vv

<

- Plaintext:. “ATTACK AT DAWN

. Ciphertext: “YEEYHT YE PYDL”

- More formally:
— Plaintext space = ciphertext space = {0..25} Im
— Key space = 1-to-1 mappings of {0..25} (i.e., permutations)
— Encryption: map each letter according to the key

- Key space = 26! = 4 x 1028 = 29, (Large enough.)
. Still easy to break
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Breaking the substitution cipher

- The plaintext has a lot of structure
— Known letter distribution in English (e.g. Pr(“e”) = 13%).
— Known distribution of pairs of letters (“th” vs. “jj”)

15 —
10 —
5_

u_ahcdefghiiklmnupqrstuvwxyz
8.2 1.5 28 43 127 2.2 20 6.1 70 0.2 0.8 40 24 67 75 19 0.1 6.0 6.3 9.1 28 1.0 2.4 0.2 20 0.1
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. QEFP FP QEB CFOPQ QBUQ

. QEFP FP QEB CFOPQ QBUQ
TH

. THFP FP THB CFOPT TBUT

TH TTT

SISTH ISTT T
S IS THB CIOST TBUT

00000000000000

SISTHE ISTTET
SIS THE FIRST TEXT
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The Vigenere cipher

- Plaintext space = ciphertext space = {0..25} I™
- Key space = strings of |k| letters {0..25}X

- Generate a pad by repeating the key until it is as long as the
plaintext (e.g., “SECRETSECRETSEC?)

- Encryption algorithm: add the corresponding characters
of the pad and the plaintext

- THIS IS THE PLAINTEXT TO BE ENCRYPTED
- SECR ET SEC RETSECRET SE CR ETSECRETSE

. |Key space| = 26K, (k=17 implies |key space]| = 280)
- Each plaintext letter is mapped to |k| different letters
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Attacking the Vigenere cipher

- Known plaintext attack (or rather, known plaintext
distribution)

— Guess the key length K|

— Examine every |k|'th letter, this is a shift cipher
- THIS IS THE PLAINTEXT TO BE ENCRYPTED

- SECR ET SEC RETSECRET SE CR ETSECRETS
— Attack time: |k| x |k| x time of attacking a shift cipher(@

- Chosen plaintext attack:
— Use the plaintext “aaaaaaa...”

(1) Can’'t assume English plaintext. Can assume known letter
frequency
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Perfect Cipher

What type of security would we like to achieve?

“Given C, the adversary has no idea what M is”

— Impossible since the adversary might have a-priori
Information

In an “ideal” world, the message will be delivered in a
magical way, out of the reach of the adversary

-~ We would like to achieve similar security

Definition: a perfect cipher
— Pr( plaintext = P | ciphertext = C ) = Pr( plaintext = P)
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Perfect Cipher

- For a perfect cipher, it holds that given ciphertext C,
— Pr( plaintext =P | C) = Pr( plaintext = P)
— I.e., knowledge of ciphertext does not change the a-priori
distribution of the plaintext

— Probabilities taken over key space and plaintext space

— One Time Pad (Vernam cipher): (for a one bit plaintext)
- Plaintext p € {0,1}
- Key k €5 {0,1} (i.e. Pr(k=0) = Pr(k=1) = %2)
« Ciphertext=p @ k

- What happens if we know a-priori that Pr(plaintext=1)=0.8 ?
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The one-time-pad is a perfect cipher

ciphertext = plaintext @ k

Pr ( ciphertext = 1)
- = Pr (plaintext @ key = 1)
- = Pr (key = plaintext @ 1) =%

Pr(plaintext = 1 | ciphertext = 1)
- = Pr(plaintext =1 & ciphertext = 1) / Pr(ciphertext = 1)
- = Pr(plaintext =1 & ciphertext=1)/%
- = Pr(ciphertext = 1 | plaintext = 1) - Pr(plaintext =1) / %2
- = Pr(key = 0) - Pr(plaintext =1) / %2
« =% . Pr(plaintext =1) / Y2
- = Pr(plaintext = 1)
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The one-time-pad

- Plaintext = p,p,...p,,€ 2™ (e.g. £={0,1}, or Z={A...Z})

- key = k.k,...k,, e 2™

- Ciphertext = c,C,...C,, C,=p, Dk

. Essentially a shift cipher with a different key for every
character

- Shannon [47,49]:
- An OTP is a perfect cipher, unconditionally secure. ©

— As long as the key is a random string, of the same length
as the plaintext. ®

— Cannot use
- Shorter key (e.g., Vigenere cipher)

« A key which is not chosen uniformly at random
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e Introduction

- Kerckhoff’'s Principle
- Some classic ciphers
— Brute force attacks
- Required key length
— A large key does no guarantee security

- Perfect ciphers
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