Advanced Topics in Cryptography

Lecture 8-9 Secure Computation in the Multi-Party Setting

Benny Pinkas

Overview

Secure computation for more than two parties, computing Boolean circuits.

- GMW (Goldreich-Micali-Wigderson)
 - First, for semi-honest adversaries.
 - Then, general compiler from semi-honest to malicious
 - # rounds depends on circuit depth
 - O. Goldreich, Foundations of Cryptography, Vol. II, Chapter 7.
- BMR (Beaver-Micali-Rogaway)
 - ▶ O(I) rounds

The setting

- ▶ Parties $P_1,...,P_n$
- ▶ Inputs $x_1,...,x_n$ (bits, but can be easily generalized)
- Outputs $y_1, ..., y_n$
- ▶ The functionality is described as a Boolean circuit.
 - Wlog, uses only XOR (+) and AND gates
 - NOT(x) is computed as a x+1
 - Wires are ordered so that if wire k is a function of wires i and j, then i<k and j<k.</p>

The setting

▶ The adversary controls a subset of the parties

- This subset is defined before the protocol begins (is "non-adaptive")
- We will not cover the adaptive case

Communication

- Synchronous
- Private channels between any pair of parties (can be easily implemented using encryption)

Adversarial models

Semi-honest

- Malicious with no abort
 - ▶ GMW:A protocol secure any number of malicious parties
- Malicious with abort
 - ▶ GMW:A protocol secure against a minority of malicious parties with abort (will not be discussed here).

Protocol for semi-honest setting

- ▶ The protocol:
 - Each party shares its input bit
 - Scan the circuit gate by gate
 - Input values of gate are shared by the parties
 - Run a protocol computing a sharing of the output value of the gate
 - ▶ Repeat
 - Publish outputs

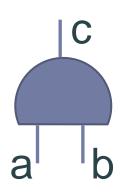
Protocol for semi-honest setting

▶ The protocol:

- Each party shares its input bit
- ▶ The sharing procedure:
 - \triangleright P_i has input bit x_i
 - ▶ It chooses random bits $r_{i,i}$ for all $i \neq j$.
 - ▶ Sends bit $r_{i,j}$ to P_i .
 - ▶ Sets its own share to $r_{i,i} = x_i + (\sum_{i \neq i} r_{i,i}) \mod 2$
 - Therefore $\Sigma_{j=1...n}$ $r_{i,j} = x_i \mod 2$.
- Now every P_j has n shares, one for each input x_i of each P_i .

Evaluating the circuit

- Scan circuit by the order of wires
- Wire c is a function of wires a,b
 - P_i has shares a_i, b_i. Must get share of c_i.



- Addition gate:
 - \triangleright P_i computes c_i=a_i+b_i.
- ► Indeed, $c = a+b \pmod{2} =$ $(a_1+...+a_n) + (b_1+...+b_n) = (a_1+b_1)+...+(a_n+b_n) =$ $c_1+...+c_n$

Evaluating multiplication gates

- $c = a \cdot b = (a_1 + \dots + a_n) \cdot (b_1 + \dots + b_n) = \sum_{i=1\dots n} a_i b_i + \sum_{i \neq j} a_i b_j = \sum_{i=1\dots n} a_i b_i + \sum_{1 \leq i < j \leq n} (a_i b_j + a_j b_i)$
- P_i will obtain a share of a_ib_i+Σ_{i<j≤n} (a_ib_j + a_jb_i)
- Computing a_ib_i by P_i is easy
- What about a_ib_i + a_ib_i?
- P_i and P_j run the following protocol for every i<j.</p>

Evaluating multiplication gates

- Input: P_i has a_i,b_i, P_j has a_j,b_j.
- $ightharpoonup P_i$ outputs $a_i b_j + a_j b_i + s_{i,j}$. P_j outputs $s_{i,j}$.
- ▶ P_j:
 - Chooses a random s_{i,i}
 - Computes the four possible outcomes of a_ib_j+a_jb_i+s_{i,j}, depending on the four options for P_i's inputs.
 - Sets these values to be its input to a 1-out-of-4 OT
- ▶ P_i is the receiver, with input 2a_i+b_i.

Recovering the output bits

The protocol computes shares of the output wires.

Each party sends its share of an output wire to the party P_i that should learn that output.

P_i can then sum the shares, obtain the value and output it.

Proof of Security

- Recall definition of security for semi-honest setting:
 - Simulation Given input and output, can generate the adversary's view of a protocol execution.
- Suppose that adversary controls the set J of all parties but P_i.
- ▶ The simulator is given (x_i, y_i) for all $P_i \in J$.

The simulator

- Shares of input wires: ∀j∈J choose
 - ightharpoonup a random share $\mathbf{r}_{j,i}$ to be sent from P_j to P_i ,
 - ▶ and a random share $r_{i,j}$ to be sent from P_i to P_j .
- Shares of multiplication gate wires:
 - ∀j<i, choose a random bit as the value learned in the 1out-of-4 OT.
 - \forall j>i, choose a random $s_{i,j}$, and set the four inputs of the OT with P_i accordingly.
- Output wire y_j of j∈J: set the message received from P_i as the XOR of y_j and the shares of that wire held by P_j∈J.

Security proof

- The output of the simulation is distributed identically to the view in the real protocol
 - Certainly true for the random shares $r_{i,j}$, $r_{j,i}$ sent from and to P_i .
 - OT for j<i: output is random, as in the real protocol.</p>
 - OT for j<i: input to the OT defined as in the real protocol.</p>
 - Output wires: message from P_i distributed as in the real protocol.

QED

Performance

- Must run an OT for every multiplication gate
 - Namely, public key operations per multiplication gate
 - Need a communication round between all parties per every multiplication gate
 - Can process together a set of multiplication gates if all their input wires are already shared
 - ▶ Therefore number of rounds is O(d), where d is the depth of the circuit (counting only multiplication gates).

The BMR protocol

- Beaver-Micali-Rogaway
- A multi-party version of Yao's protocol
- Works in O(I) communication rounds, regardless of the depth of the Boolean circuit.
 - D. Beaver, S. Micali and P. Rogaway, "The round complexity of secure protocols", 1990.
 - ▶ A. Ben-David, N. Nisan and B. Pinkas, "FairplayMP A System for Secure Multi-Party Computation", 2010.

The BMR protocol

- Two random seeds (garbled values) are set for every wire of the Boolean circuit:
 - Each seed is a concatenation of seeds generated by all players and secretly shared among them.
- The parties securely compute together a 4x1 table for every gate (in parallel):
 - ▶ Given 0/1 seeds of the input wires, the table reveals the seed of the resulting value of the output wire.

The BMR protocol

- The parties securely compute together a 4x1 table for every gate (in parallel):
 - This is essentially a secure computation of the table
 - But all tables can be computed in parallel. Therefore O(1) rounds.
 - This is the main bottleneck of the BMR protocol.
- Given the tables, and seeds of the input values, it is easy to compute the circuit output.

The malicious case

- What can go wrong with malicious behavior?
 - Using shares other than those defined by the protocol, using arbitrary inputs to the OT protocol and sending wrong shares of output wires...
- We will show a compiler which forces the parties to operate as in the semi-honest model. (For both GMW and BMR.)
- The basic idea:
 - ▶ In every step, each P_i proves in zero knowledge that its messages were computed according to the protocol

Zero knowledge proofs (we studied this already)

- Prover P, verifier V, language L
- ▶ P proves that x∈L without revealing anything
 - Completeness: V always accepts when x∈L, and an honest P and V interact.
 - Soundness: V accepts with negligible probability when x∉L, for any P*.
 - Computational soundness: only holds when P* is polynomialtime
- Zero-knowledge:
 - There exists a simulator S such that S(x) is indistinguishable from a real proof execution.

A warm-up

- Assume that each party P_i runs a deterministic program Π_i . The compiler is the following:
 - ▶ Each P_i commits to its input x_i by sending $C_i(r_i,x_i)$, where r_i is a random string used for the commitment.
 - Let T_is be the transcript of P_i at step s, i.e. all messages received and sent by P_i until that step.
 - Define the language $L_i = \{T_i^s \text{ s.t. } \exists x_i, r_i \text{ so that all messages}$ sent by P_i until step s are the output of Π_i applied to x_i, r_i and to all messages received by P_i up to that step}
 - When sending a message in step s prove in zeroknowledge that $T_i^s \in L_i$.

Handling randomized protocols

- The previous construction assumes that P_i's program, Π_i , is deterministic.
- This is not true in the semi-honest protocol we have seen.
 - In particular, the choice of shares, and the sender's input to the OT, must be random.
 - ▶ The compiler must ensure that P_i chooses its random coins independently of the messages received from other parties.
 - This is not ensured by the previous construction.

The compiler

We will describe the basic issues of a protocol secure against any number of malicious parties, but with no aborts allowed.

Communication model:

- Messages are published on a bulletin board, and can be read by all parties.
- This implements a broadcast, ensuring that all parties receive the same message.
- Broadcast can be easily implemented if a public key infrastructure exists.
- We assume that a PKI does exist.

The compiler

Input commitment phase:

• Each party commits to its input.

Coin generation phase:

- The parties generate random tapes for each other (this ensures that the randomness is independent of the messages.)
- Initial idea: random tape of P_i is defined as $s_{1,i} \oplus s_{2,i} \oplus \ldots \oplus s_{n,i}$, where $s_{j,i}$ is chosen by P_j .
- ▶ But this lets P_n control the outcome \odot

Protocol emulation phase:

Run the protocol while proving that the operations of the parties comply with their inputs and random tapes.

24

The protocol: Input commitment phase

- The required functionality for P_1 is $(x,1^{|x|},...1^{|x|}) \rightarrow (r,C_r(x),...C_r(x))$, and similarly for each P_i .
 - ▶ (This is required in order to choose the randomness.)
- It is not sufficient to ask P₁ to just broadcast a commitment of its input
 - This does not ensure that this is a random commitment for which P_i knows a decommitment.
- The protocol is more complex...
- It is useful to first design tools that can help in constructing the compiler.

Tool 1: image transmission

- ► The required functionality is $(a,1^{|a|},...1^{|a|}) \rightarrow (\lambda,f(a),...,f(a))$ (all receive the same function of a)
- Protocol
 - P₁ broadcasts an encryption of f(a)
 - For j=2...n, P₁ proves to P₂ a zero-knowledge proof of knowledge of a value a corresponding to f(a).
 - ▶ If P_i rejects, it broadcasts the coins it used in the proof.
- Output: For j=2...n, if P_j sees a justifiable rejection it aborts, otherwise it outputs f(a).
 - Agreement to whether P₁ misbehaved is reduced to the decision on whether some verifier has justifiably rejected the proof.

Tool 1: image transmission

- The required functionality is $(a,1^{|a|},...1^{|a|}) \rightarrow (\lambda,f(a),...,f(a))$
- Agreement as to whether P₁ misbehaved is reduced to the decision on whether some verifier has justifiably rejected the proof.
- If P₁ is honest, then no malicious party can claim that it cheated.

Tool 2: authenticated computation

The required functionality is

$$(a,b_2,...,b_n) \rightarrow (\lambda,v_2,...,v_n),$$

where $v_i=f(a)$ if $b_i=h(a)$ and $v_i=\lambda$ otherwise.

- Protocol:
 - Use the image transmission tool to broadcast (f(a),h(a)) to all P_i , j=2...n.
 - P_i outputs f(a) if b_i =h(a), and λ otherwise.
- Comment: P_j learns a function f(a) of a, if it already has the function h(a) (e.g., if it has a commitment to a)

Tool 3: multi-party augmented coin-tossing

The required functionality is

$$(1^n,...,1^n) \rightarrow (r,g(r),...,g(r)).$$

Typically we will use it for computing $(1^n,...,1^n) \rightarrow ((r,s), C_s(r),..., C_s(r)).$

The challenge: ensuring that P₁'s output is random.
We cannot trust P₁ to choose a random output.

Tool 3: multi-party augmented coin-tossing

- ► $(1^n,...,1^n)$ → $((r,s), C_s(r),..., C_s(r))$.
 - ► Toss and commit: $\forall i$, P_i chooses r_i , s_i and uses the image transmission tool to send $c_i = C_{Si}(r_i)$ to all P_i .
 - ▶ <u>Open commits</u>: $\forall i \geq 2$, P_i uses the <u>authenticated computation</u> tool to send s_i , r_i to all parties that already have c_i .
 - If P_j obtains r_i agreeing with c_i , it sets $r_i^j = r_i$ (also, $r_j^j = r_j$). Otherwise it aborts.
 - If P_1 did not abort, it sets $r = \bigoplus_{i=1...n} r_i$, sends $C_s(r)$ to all other parties (to be used for the main protocol), and proves that $C_s(r)$ was constructed correctly.
 - (details in the next slide)

Tool 3: multi-party augmented coin-tossing (contd.)

- P₁ sends C_s(r) to all other parties, and <u>proves</u> that it was constructed correctly.
- Run the authenticated computation functionality
 - ▶ P_1 chooses a random s. Its input to the protocol is $(r_1,s_1,s,\bigoplus_{i=2...n}r_i^1)$
 - \triangleright P_j's input is c₁, $\bigoplus_{j=2...n} r_i^j$
 - If $c_1 = C_{S1}(r_1)$ and $\bigoplus_{j=2...n} r_i^{j} = \bigoplus_{j=2...n} r_i^{1}$, then P_j outputs $C_s(\bigoplus_{j=1...n} r_i) = C_s(r)$. Otherwise it aborts.
 - ▶ P₁ outputs r.

The main protocol: Input commitment phase

Protocol:

- P_i chooses random r'_i and uses the image transmission functionality to send $c'=C_{r'_i}(x_i)$ to all parties.
- Nun augmented coin-tossing protocol s.t. P_i learns (r_i, r_i^n) and others learn $c'' = C_{r_i^n}(r_i)$.
- Run authenticated computation where P_i has input (x_i,r_i,r_i',r_i') and others input (c',c''), and others learn $C_{ri}(x_i)$ if (c',c'') are the required functions of P_i 's input.

The main protocol: coin generation phase

- Each P_i runs the augmented coin tossing protocol where
 - P_i learns (rⁱ,sⁱ)
 - The other parties learn $C_{si}(r^i)$.

The main protocol: Protocol emulation phase

- The parties use the authenticated computation functionality
 - ► $(a,b_2,...,b_n)$ $\rightarrow (\lambda,v_2,...,v_n)$, where $v_j=f(a)$ if $b_j=h(a)$ and $v_j=\lambda$ otherwise.
- Suppose that it is P_i's turn to send a message
 - Its input is (x_i, r^i, T_t) , as well as the coins used for commitments, where T_t is the sequence of messages exchanged so far.
 - Every other party has input $(C(x_i), C(r^i), T_t)$
 - $f(x_i, r^i, T_t)$ is the message P_i must send
 - It is accepted if $(C(x_i),C(r_i),T)$ agree with x_i,r_i,T and the program that is run

Summary

- Can compute any functionality securely in presence of semi-honest adversaries
- Protocol is efficient enough for use, for circuits that are not too large
- The full proof is in Goldreich's book.