Advanced Topics in Cryptography

Lecture 5

Benny Pinkas

Based on slides of Yehuda Lindell

page 1 April 30, 2013

Zero Knowledge

» Prover P, verifierV, language L

» P proves that xeL without revealing anything

Completeness: V always accepts when honest P and V
interact

Soundness: V accepts with negligible probability when x¢gL,
for any P*

Computational soundness: only holds when P* is polynomial-time
» Zero-knowledge:

There exists a simulator S such that S(x) is indistinguishable
from a real proof execution

2 April 30, 2013

ZK Proof of Knowledge

» Prover P, verifierV, relation R

» P proves that it knows a witness w for which (x,w)eR
without revealing anything
The proof is zero knowledge as before

There exists an extractor K that can obtain from any P*,a w

such that (x,w)€R, with the same probability that P* convinces
V.

3 April 30, 2013

Sigma Protocols

» A way to obtain efficient zero knowledge
Many general tools

Many interesting languages can be proven with a sigma
protocol

4 April 30, 2013

Reminder: Schnorr DLOG

» Let G be a group of order q, with generator g
» Pand V have input heG. P has w such that g¥ = h
» P proves that toV that it knows DLOG,(h)

P chooses a random r and sends a=g" to V

V sends P a random e€{0,1 }*

P sends z=r+ew mod q to V

V checks that gz = ah®

» Completeness
gz — gr+ew — gr(gw)e — ahe

5 April 30, 2013

Schnorr’s Protocol

» Proof of knowledge

: P (h,w) Vv (h)
Assume P can answer two queries e and ag
e’ for the same a >
[/ <— e

Then, it holds that gz = ah¢, gZ=ah*)

’ ’ ' ’ Z=r+ew -

Zlh-e = gZ'lh-€ z-Z' =l e-e

Thus, gzh¢ = gzh® and g©*=h .

Therefore h = g(zz)/(e-¢)
That is: DLOGg(h) = (z-z')/(e-€')
» Conclusion:

If P can answer with probability greater
than /2% then it must know the dlog

6 April 30, 2013

Schnorr’s Protocol

» What about zero knowledge? This does not seem easy.

» But ZK holds if the verifier sends a random challenge e

)

» This property is called “Honest-verifier zero knowledge’
The simulation:
Choose a random z and e, and compute a = gzh™®

Clearly, (a,e,z) have the same distribution as in a real run, and
gz=ahe

» This is not a very strong guarantee, but we will see that it
yields efficient general ZK.

7 April 9, 2013

Definitions

» Sigma protocol template
Common input: P and V both have x

Private input: P has w such that (x,w)eR

Protocol:
P sends a message a
V sends a random t-bit string e

P sends a reply z
V accepts based solely on (x,a,e,z)

April 30, 2013

Definitions

» Completeness: as usual

» Special soundness:

There exists an algorithm A that given any x and pair of
transcripts (a,e,z),(a,e’,z’) with e#e’ outputs w s.t. (Xx,w)eR

» Special honest-verifier ZK

There exists an My, that given any x and e outputs (a,e,z)
which is distributed exactly like a real execution where V
sends e

9 April 30, 2013

Tools for Sigma Protocols

» Last lecture: Prove compound statements
AND, OR, subset

» ZK from sigma protocols

Can first make a compound sigma protocol and then compile it

» ZKPOK from sigma protocols

10 April 30, 2013

ZK from Sigma Protocols

» A tool: commitment schemes

» Enables to commit to a chosen value while keeping it
secret, with the ability to reveal the committed value later.

» A commitment has two properties:

Binding: After sending the commitment, it is impossible for the
committing party to change the committed value.

Hiding: By observing the commitment, it is impossible to learn
what is the committed value. (Therefore the commitment
process must be probabilistic.)

» It is possible to have unconditional security for any one of
these properties, but not for both.

11 April 30, 2013

Pedersen Commitments

» Highly efficient perfectly-hiding commitments (two
exponentiations for string commit)

Parameters: generator g, order (
Commit protocol (commit to x):

Receiver chooses random k and sends h=gk

Sender sends c=g"h*, for random r
Unconditionally hiding:
For every x,y there exist r,s s.t. r+kx = s+ky mod q
Binding:
If sender can open commitment in two ways, i.e. find (x,r),(Y,s) s.t.
g'h*=gshY, then k = (r-s)/(y-x) mod q

12 April 30, 2013

ZK from Sigma Protocols

» The basic idea
Have V first commit to its challenge e using a perfectly-hiding
commitment

» The protocol

P sends the first message o of the commit protocol, (e.g.,
including g,h in the case of Pedersen commitments).

V sends a commitment c=Com(e;r)

P sends a message a

V sends (e,r)

P checks that c=Com_(e;r) and if this holds it sends a reply z

V accepts based on (x,a,e,z)

13 April 30, 2013

ZK from Sigma Protocols

» Soundness:

The perfectly hiding commitment reveals nothing about e and
so soundness is preserved

» Zero knowledge

In order to simulate:
Receive a commitment from V.
Have the Sigma simulator generate e’ and a'.Send 3’ to V.
Receive V’s decommitment to e.
Run Sigma protocol simulator again with e. Receive corresponding a.
Rewind V and send it a. If V does not decommit to e then abort.

Conclude by sending z
Analysis...

14 April 30, 2013

ZK from Sigma Protocols

» Question

If computational soundness suffices, can we use a
computationally-hiding commitment scheme!

» No:

We should prove that cheating in the proof involves
distinguishing between commitments to different values

Therefore the proof should receive a random commitment,
and see if P* can cheat

The reduction fails because we only know if P* cheated
after we opened the commitment

15 April 30, 2013

Efficiency of ZK

» Using Pedersen commitments, the entire DLOG proof
costs only 5 additional group exponentiations

In Elliptic curve groups this is very little

16 April 30, 2013

ZKPOK from Sigma Protocols

» Is the previous protocol a proof of knowledge?

It seems not to be

The extractor for the Sigma protocol needs to obtain two
transcripts with the same a and different e
Nothing prevents the prover from choosing its first message a
differently for every commitment string.
In this protocol the prover sees a commitment to e before
sending a.

Therefore if the extractor (playing the role of the verifier) changes
e, and therefore sends a different commitment, the prover changes
a, and extraction is impossible.

17 April 30, 2013

ZKPOK from Sigma Protocols

» Solution: use a trapdoor (equivocal) commitment scheme

That is,a commitment that given a trapdoor, it is possible to
open it to any value.

» Pedersen has this property — given the discrete log k of h,
it is possible decommit to any value
Suppose that you know the discrete log k of h.
Commit to x: ¢ = g'h*
To decommit to y, find s such that r+kx = s+ky
This is easy if k is known: compute s = r+k(x-y) mod q

18 April 30, 2013

ZKPOK from Sigma Protocols

» The basic idea

Have V first commit to its challenge e using a perfectly-hiding
trapdoor (equivocal) commitment

» The pl’OtOCOl (as before, but the commitment is equivocal)

P sends the first message a of the commit protocol (which
includes h in the case of Pedersen’s commitment).

V sends a commitment c=Com(e;r)
P sends a message a
V sends (e,r)

P checks that c=Com_(e;r) and if this holds sends the
trapdoor for the commitment and z

V accepts if the trapdoor is correct and (x,a,e,z) is accepting

19 April 30, 2013

ZKPOK from Sigma Protocols

P (x,w) V (x)
h:gk, with random k

C:gl’he

Sigma msg a

(e.r)

Verify c=g'he
(k,2)

Verify h=gk
Verify (a,e,z)

20 April 30, 2013

ZKPOK from Sigma Protocols
» Why does this help?

Zero-knowledge remains the same

Extraction: after verifying the proof once, the extractor
obtains k and can rewind back to the decommitment of ¢
and send any (e',r’)

» Efficiency:

Just 6 exponentiations (very little)

21 April 30, 2013

ZK and Sigma Protocols

» We typically want zero knowledge, so why bother with
sigma protocols!?
There are many useful general transformations

E.g., parallel composition, compound statements

The ZK and ZKPOK transformations can be applied on top of the
above, so obtain transformed ZK

It is much harder to prove ZK than Sigma
ZK — distributions and simulation

Sigma: only HVZK and special soundness

22 April 30, 2013

Using Sigma Protocols and ZK

» Prove that the El Gamal encryption (u,v) under public-key
(g,h) is to the value m
By encryption definition u=g", v=h"m
Thus (g,h,u,v/m) is a DH tuple

So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH
tuple

23 April 30, 2013

