
April 30, 2013 page 1 

Advanced Topics in Cryptography 

 

Lecture 5 

Benny Pinkas 

 
Based on slides of Yehuda Lindell  

 



 Prover P, verifier V, language L 

 P proves that xL without revealing anything 

 Completeness: V always accepts when honest P and V 

interact 

 Soundness: V accepts with negligible probability when xL, 

for any P* 

 Computational soundness: only holds when P* is polynomial-time 

 Zero-knowledge: 

 There exists a simulator S such that S(x) is indistinguishable 

from a real proof execution 

 

2 

Zero Knowledge 

April 30, 2013 



 Prover P,  verifier V,  relation R 

 P proves that it knows a witness w for which (x,w)R 

without revealing anything 

 The proof is zero knowledge as before 

 There exists an extractor K that can obtain from any P*,a w 

such that (x,w)R, with the same probability that P* convinces 

V. 

 

3 

ZK Proof of Knowledge 

April 30, 2013 



 A way to obtain efficient zero knowledge 

 Many general tools 

 Many interesting languages can be proven with a sigma 

protocol 

4 

Sigma Protocols 

April 30, 2013 



 Let G be a group of order q, with generator g 

 P and  V have input hG.  P has w such that gw = h 

 P proves that to V that it knows DLOGg(h) 

 P chooses a random r and sends a=gr to V 

 V sends P a random e0,1t  

 P sends z=r+ew mod q to V 

 V checks that gz = ahe 

 

 Completeness 

 gz = gr+ew = gr(gw)e = ahe 

5 

Reminder: Schnorr DLOG 

April 30, 2013 



 Proof of knowledge 

 Assume P can answer two queries e and 

e for the same a 

 Then, it holds that gz = ahe, gz=ahe 

 Thus, gzh-e = gzh-e and gz-z=he-e 

 Therefore h = g(z-z)/(e-e) 

 That is: DLOGg(h) = (z-z)/(e-e) 

 Conclusion: 

 If P can answer with probability greater 

than 1/2t, then it must know the dlog 

6 

Schnorr’s Protocol 

),wh( P )h( V 

a=gr 

e 

z=r+ew 

gz = ahe 
? 

April 30, 2013 



 What about zero knowledge? This does not seem easy. 

 

 But ZK holds if the verifier sends a random challenge e 

 This property is called “Honest-verifier zero knowledge” 

 The simulation: 

 Choose a random z and e, and compute a = gzh-e 

 Clearly, (a,e,z) have the same distribution as in a real run, and 

gz=ahe 

 

 This is not a very strong guarantee, but we will see that it 

yields efficient general ZK. 

7 

Schnorr’s Protocol 

April 9, 2013 



 Sigma protocol template 

 Common input: P and V both have x 

 Private input: P has w such that (x,w)R 

 

 Protocol: 

 P sends a message a 

 V sends a random t-bit string e 

 P sends a reply z 

 V accepts based solely on (x,a,e,z) 

8 

Definitions 

April 30, 2013 



 Completeness: as usual 

 

 Special soundness: 

 There exists an algorithm A that given any x and pair of 

transcripts (a,e,z),(a,e,z) with ee outputs w s.t. (x,w)R 

 

 Special honest-verifier ZK 

 There exists an MV that given any x and e outputs (a,e,z) 

which is distributed exactly like a real execution where V 

sends e 

9 

Definitions 

April 30, 2013 



 Last lecture: Prove compound statements 

 AND, OR, subset 

 

 ZK from sigma protocols 

 Can first make a compound sigma protocol and then compile it 

 

 ZKPOK from sigma protocols 

10 

Tools for Sigma Protocols 

April 30, 2013 



 A tool: commitment schemes 

  Enables to commit to a chosen value while keeping it 

secret, with the ability to reveal the committed value later. 

 A commitment has two properties: 

 Binding: After sending the commitment, it is impossible for the 

committing party to change the committed value. 

 Hiding: By observing the commitment, it is impossible to learn 

what is the committed value. (Therefore the commitment 

process must be probabilistic.) 

 It is possible to have unconditional security for any one of 

these properties, but not for both. 

11 

ZK from Sigma Protocols 

April 30, 2013 



 Highly efficient perfectly-hiding commitments (two 

exponentiations for string commit) 

 Parameters: generator g, order q 

 Commit protocol (commit to x): 

 Receiver chooses random k and sends h=gk 

 Sender sends c=grhx, for random r 

 Unconditionally hiding:  

 For every x,y there exist r,s s.t. r+kx = s+ky mod q 

 Binding: 

 If sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t. 

grhx=gshy, then k = (r-s)/(y-x) mod q 

12 

Pedersen Commitments 

April 30, 2013 



 The basic idea 

 Have V first commit to its challenge e using a perfectly-hiding 

commitment 

 The protocol 

 P sends the first message  of the commit protocol, (e.g., 

including g,h in the case of Pedersen commitments). 

 V sends a commitment c=Com(e;r) 

 P sends a message a 

 V sends (e,r) 

 P checks that c=Com(e;r)  and if this holds it sends a reply z 

 V accepts based on (x,a,e,z) 

 

13 

ZK from Sigma Protocols 

April 30, 2013 



 Soundness: 

 The perfectly hiding commitment reveals nothing about e and 

so soundness is preserved 

 

 Zero knowledge 

 In order to simulate: 

 Receive a commitment from V. 

 Have the Sigma simulator generate e and a. Send a’ to V.  

 Receive V’s decommitment to e. 

 Run Sigma protocol simulator again with e. Receive corresponding a. 

 Rewind V and send it a. If V does not decommit to e then abort. 

 Conclude by sending z 

 Analysis… 
14 

ZK from Sigma Protocols 

April 30, 2013 



 Question 

 If computational soundness suffices, can we use a 

computationally-hiding commitment scheme? 

 

 No: 

 We should prove that cheating in the proof involves 

distinguishing between commitments to different values 

 

 Therefore the proof should receive a random commitment, 

and see if P* can cheat 

 The reduction fails because we only know if P* cheated 

after we opened the commitment 

15 

ZK from Sigma Protocols  

April 30, 2013 



 Using Pedersen commitments, the entire DLOG proof 

costs only 5 additional group exponentiations 

 In Elliptic curve groups this is very little 

16 

Efficiency of ZK 

April 30, 2013 



 Is the previous protocol a proof of knowledge? 

 It seems not to be  

 

 The extractor for the Sigma protocol needs to obtain two 

transcripts with the same a and different e 

 Nothing prevents the prover from choosing its first message a 

differently for every commitment string. 

 In this protocol the prover sees a commitment to e before 

sending a. 

 Therefore if the extractor (playing the role of the verifier) changes 

e, and therefore sends a different commitment, the prover changes 

a, and extraction is impossible. 

17 

ZKPOK from Sigma Protocols 

April 30, 2013 



 Solution: use a trapdoor (equivocal) commitment scheme 

 That is, a commitment that given a trapdoor, it is possible to 

open it to any value. 

 

 Pedersen has this property – given the discrete log k of h, 

it is possible decommit to any value 

 Suppose that you know the discrete log k of h. 

 Commit to x:  c = grhx 

 To decommit to y, find s such that r+kx = s+ky 

 This is easy if k is known: compute s = r+k(x-y) mod q 

 

18 

ZKPOK from Sigma Protocols 

April 30, 2013 



 The basic idea 

 Have V first commit to its challenge e using a perfectly-hiding 
trapdoor (equivocal) commitment 

 The protocol (as before, but the commitment is equivocal) 

 P sends the first message  of the commit protocol (which 
includes h in the case of Pedersen’s commitment). 

 V sends a commitment c=Com(e;r) 

 P sends a message a 

 V sends (e,r) 

 P checks that c=Com(e;r)  and  if this holds sends the 
trapdoor for the commitment and z 

 V accepts if the trapdoor is correct and (x,a,e,z) is accepting 

 

19 

ZKPOK from Sigma Protocols 

April 30, 2013 



20 

ZKPOK from Sigma Protocols 

)x,w( P )x( V 

Sigma msg a 

 

(e,r) 

(k,z) 

Verify h=gk 

Verify (a,e,z) 

h=gk, with random k 

 

c=grhe 

 

Verify c=grhe 

April 30, 2013 



 Why does this help? 

 Zero-knowledge remains the same 

 Extraction: after verifying the proof once, the extractor 

obtains k and can rewind back to the decommitment of c 

and send any (e,r) 

 

 Efficiency: 

 Just 6 exponentiations (very little) 

 

21 

ZKPOK from Sigma Protocols 

April 30, 2013 



 We typically want zero knowledge, so why bother with 

sigma protocols? 

 There are many useful general transformations 

 E.g., parallel composition, compound statements 

 The ZK and ZKPOK transformations can be applied on top of the 

above, so obtain transformed ZK 

 

 It is much harder to prove ZK than Sigma 

 ZK – distributions and simulation 

 Sigma: only HVZK and special soundness 

 

22 

ZK and Sigma Protocols 

April 30, 2013 



 Prove that the El Gamal encryption (u,v) under public-key 

(g,h) is to the value m 

 By encryption definition u=gr, v=hrm 

 Thus (g,h,u,v/m) is a DH tuple 

 So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH 

tuple 

 

23 

Using Sigma Protocols and ZK 

April 30, 2013 


