Advanced Topics in Cryptography

Lecture 5

Benny Pinkas

Based on slides of Yehuda Lindell

Zero Knowledge

- Prover P, verifier V, language L
- P proves that $x \in L$ without revealing anything
 - Completeness: V always accepts when honest P and V interact
 - Soundness: V accepts with negligible probability when x∉L, for any P^{*}
 - Computational soundness: only holds when \mathbf{P}^* is polynomial-time

Zero-knowledge:

There exists a simulator S such that S(x) is indistinguishable from a real proof execution

ZK Proof of Knowledge

- Prover P, verifier V, relation R
- P proves that it knows a witness w for which (x,w)∈R without revealing anything
 - The proof is zero knowledge as before
 - There exists an extractor **K** that can obtain from any \mathbf{P}^* , a **w** such that $(\mathbf{x}, \mathbf{w}) \in \mathbf{R}$, with the same probability that \mathbf{P}^* convinces **V**.

Sigma Protocols

A way to obtain efficient zero knowledge

- Many general tools
- Many interesting languages can be proven with a sigma protocol

Reminder: Schnorr DLOG

- Let G be a group of order q, with generator g
- ▶ P and V have input $h \in G$. P has w such that $g^w = h$
- P proves that to V that it knows DLOG_g(h)
 - P chooses a random r and sends a=g^r to V
 - V sends P a random $e \in \{0, I\}^t$
 - P sends z=r+ew mod q to V
 - V checks that g^z = ah^e
- Completeness

$$g^z = g^{r+ew} = g^r(g^w)^e = ah^e$$

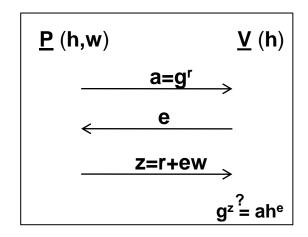
Schnorr's Protocol

Proof of knowledge

- Assume P can answer two queries e and e' for the same a
- Then, it holds that g^z = ah^e, g^{z'}=ah^{e'}
- Thus, g^zh^{-e} = g^z h^{-e'} and g^{z-z'}=h^{e-e'}
- Therefore $h = g^{(z-z')/(e-e')}$
- That is: DLOGg(h) = (z-z')/(e-e')

Conclusion:

 If P can answer with probability greater than 1/2^t, then it must know the dlog



Schnorr's Protocol

What about zero knowledge? This does not seem easy.

- But ZK holds if the verifier sends a <u>random</u> challenge e
- This property is called "Honest-verifier zero knowledge"
 - The simulation:
 - Choose a random z and e, and compute a = g^zh^{-e}
 - Clearly, (a,e,z) have the same distribution as in a real run, and g^z=ah^e
- This is not a very strong guarantee, but we will see that it yields efficient general ZK.

Definitions

- Sigma protocol template
 - **Common input: P** and **V** both have **x**
 - ▶ **Private input:** P has w such that $(x,w) \in R$
 - Protocol:
 - > P sends a message a
 - ▶ **V** sends a <u>random</u> **t**-bit string **e**
 - P sends a reply z
 - ► V accepts based solely on (x,a,e,z)

Definitions

Completeness: as usual

Special soundness:

There exists an algorithm A that given any x and pair of transcripts (a,e,z),(a,e',z') with e≠e' outputs w s.t. (x,w)∈R

Special honest-verifier ZK

There exists an M_v that given any x and e outputs (a,e,z) which is distributed exactly like a real execution where V sends e

Tools for Sigma Protocols

- Last lecture: Prove compound statements
 - AND, OR, subset
- ZK from sigma protocols
 - Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols

- A tool: commitment schemes
- Enables to commit to a chosen value while keeping it secret, with the ability to reveal the committed value later.
- A commitment has two properties:
 - Binding: After sending the commitment, it is impossible for the committing party to change the committed value.
 - Hiding: By observing the commitment, it is impossible to learn what is the committed value. (Therefore the commitment process must be probabilistic.)
- It is possible to have unconditional security for any one of these properties, but not for both.

Pedersen Commitments

- Highly efficient perfectly-hiding commitments (two exponentiations for string commit)
 - > Parameters: generator g, order q
 - **Commit protocol** (commit to **x**):
 - Receiver chooses random k and sends h=g^k
 - Sender sends c=g^rh^x, for random r
 - Unconditionally hiding:
 - For every x,y there exist r,s s.t. r+kx = s+ky mod q

Binding:

If sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t. g^rh^x=g^sh^y, then k = (r-s)/(y-x) mod q

The basic idea

Have V first commit to its challenge e using a perfectly-hiding commitment

The protocol

- P sends the first message α of the commit protocol, (e.g., including g,h in the case of Pedersen commitments).
- V sends a commitment $c=Com_{\alpha}(e;r)$
- P sends a message a
- **V** sends (**e**,**r**)
- **P** checks that $c=Com_{\alpha}(e;r)$ and if this holds it sends a reply **z**
- ▶ V accepts based on (x,a,e,z)

Soundness:

The perfectly hiding commitment reveals nothing about e and so soundness is preserved

Zero knowledge

- In order to simulate:
 - Receive a commitment from **V**.
 - Have the Sigma simulator generate e' and a'. Send a' to V.
 - Receive **V**'s decommitment to **e**.
 - Run Sigma protocol simulator again with **e**. Receive corresponding **a**.
 - Rewind **V** and send it **a**. If **V** does not decommit to **e** then abort.
 - Conclude by sending z
- Analysis...

14

Question

If computational soundness suffices, can we use a computationally-hiding commitment scheme?

No:

- We should prove that cheating in the proof involves distinguishing between commitments to different values
- Therefore the proof should receive a random commitment, and see if P* can cheat
 - The reduction fails because we only know if P* cheated after we opened the commitment

Efficiency of ZK

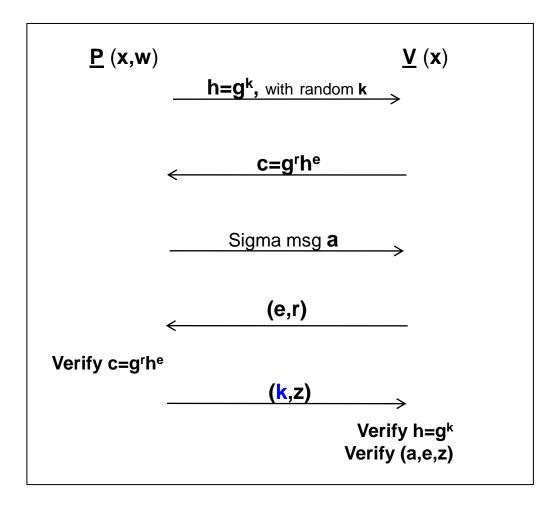
- Using Pedersen commitments, the entire DLOG proof costs only 5 additional group exponentiations
 - In Elliptic curve groups this is very little

- Is the previous protocol a proof of knowledge?
 - It seems not to be
 - The extractor for the Sigma protocol needs to obtain two transcripts with the same a and different e
 - Nothing prevents the prover from choosing its first message **a** differently for every commitment string.
 - In this protocol the prover sees a commitment to e before sending a.
 - Therefore if the extractor (playing the role of the verifier) changes
 e, and therefore sends a different commitment, the prover changes
 a, and extraction is impossible.

- Solution: use a trapdoor (equivocal) commitment scheme
 - That is, a commitment that given a trapdoor, it is possible to open it to any value.
- Pedersen has this property given the discrete log k of h, it is possible decommit to any value
 - Suppose that you know the discrete log k of h.
 - Commit to x: c = g^rh^x
 - To decommit to y, find s such that r+kx = s+ky
 - This is easy if k is known: compute s = r+k(x-y) mod q

The basic idea

- Have V first commit to its challenge e using a perfectly-hiding trapdoor (equivocal) commitment
- The protocol (as before, but the commitment is equivocal)
 - P sends the first message α of the commit protocol (which includes h in the case of Pedersen's commitment).
 - V sends a commitment $c=Com_{\alpha}(e;r)$
 - P sends a message a
 - V sends (e,r)
 - P checks that c=Com_α(e;r) and if this holds sends the trapdoor for the commitment and z
 - ▶ V accepts if the **trapdoor** is correct and (**x**,**a**,**e**,**z**) is accepting



- Why does this help?
 - Zero-knowledge remains the same
 - Extraction: after verifying the proof once, the extractor obtains k and can rewind back to the decommitment of c and send any (e',r')
- Efficiency:
 - Just 6 exponentiations (very little)

ZK and Sigma Protocols

- We typically want zero knowledge, so why bother with sigma protocols?
 - There are many useful general transformations
 - E.g., parallel composition, compound statements
 - The ZK and ZKPOK transformations can be applied on top of the above, so obtain transformed ZK
 - It is much harder to prove ZK than Sigma
 - ZK distributions and simulation
 - Sigma: only HVZK and special soundness

Using Sigma Protocols and ZK

- Prove that the El Gamal encryption (u,v) under public-key (g,h) is to the value m
 - ▶ By encryption definition **u=g**^r, **v=h**^r·**m**
 - Thus (g,h,u,v/m) is a DH tuple
 - So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH tuple