
April 30, 2013 page 1

Advanced Topics in Cryptography

Lecture 5

Benny Pinkas

Based on slides of Yehuda Lindell

 Prover P, verifier V, language L

 P proves that xL without revealing anything

 Completeness: V always accepts when honest P and V

interact

 Soundness: V accepts with negligible probability when xL,

for any P*

 Computational soundness: only holds when P* is polynomial-time

 Zero-knowledge:

 There exists a simulator S such that S(x) is indistinguishable

from a real proof execution

2

Zero Knowledge

April 30, 2013

 Prover P, verifier V, relation R

 P proves that it knows a witness w for which (x,w)R

without revealing anything

 The proof is zero knowledge as before

 There exists an extractor K that can obtain from any P*,a w

such that (x,w)R, with the same probability that P* convinces

V.

3

ZK Proof of Knowledge

April 30, 2013

 A way to obtain efficient zero knowledge

 Many general tools

 Many interesting languages can be proven with a sigma

protocol

4

Sigma Protocols

April 30, 2013

 Let G be a group of order q, with generator g

 P and V have input hG. P has w such that gw = h

 P proves that to V that it knows DLOGg(h)

 P chooses a random r and sends a=gr to V

 V sends P a random e0,1t

 P sends z=r+ew mod q to V

 V checks that gz = ahe

 Completeness

 gz = gr+ew = gr(gw)e = ahe

5

Reminder: Schnorr DLOG

April 30, 2013

 Proof of knowledge

 Assume P can answer two queries e and

e for the same a

 Then, it holds that gz = ahe, gz=ahe

 Thus, gzh-e = gzh-e and gz-z=he-e

 Therefore h = g(z-z)/(e-e)

 That is: DLOGg(h) = (z-z)/(e-e)

 Conclusion:

 If P can answer with probability greater

than 1/2t, then it must know the dlog

6

Schnorr’s Protocol

),wh(P)h(V

a=gr

e

z=r+ew

gz = ahe
?

April 30, 2013

 What about zero knowledge? This does not seem easy.

 But ZK holds if the verifier sends a random challenge e

 This property is called “Honest-verifier zero knowledge”

 The simulation:

 Choose a random z and e, and compute a = gzh-e

 Clearly, (a,e,z) have the same distribution as in a real run, and

gz=ahe

 This is not a very strong guarantee, but we will see that it

yields efficient general ZK.

7

Schnorr’s Protocol

April 9, 2013

 Sigma protocol template

 Common input: P and V both have x

 Private input: P has w such that (x,w)R

 Protocol:

 P sends a message a

 V sends a random t-bit string e

 P sends a reply z

 V accepts based solely on (x,a,e,z)

8

Definitions

April 30, 2013

 Completeness: as usual

 Special soundness:

 There exists an algorithm A that given any x and pair of

transcripts (a,e,z),(a,e,z) with ee outputs w s.t. (x,w)R

 Special honest-verifier ZK

 There exists an MV that given any x and e outputs (a,e,z)

which is distributed exactly like a real execution where V

sends e

9

Definitions

April 30, 2013

 Last lecture: Prove compound statements

 AND, OR, subset

 ZK from sigma protocols

 Can first make a compound sigma protocol and then compile it

 ZKPOK from sigma protocols

10

Tools for Sigma Protocols

April 30, 2013

 A tool: commitment schemes

 Enables to commit to a chosen value while keeping it

secret, with the ability to reveal the committed value later.

 A commitment has two properties:

 Binding: After sending the commitment, it is impossible for the

committing party to change the committed value.

 Hiding: By observing the commitment, it is impossible to learn

what is the committed value. (Therefore the commitment

process must be probabilistic.)

 It is possible to have unconditional security for any one of

these properties, but not for both.

11

ZK from Sigma Protocols

April 30, 2013

 Highly efficient perfectly-hiding commitments (two

exponentiations for string commit)

 Parameters: generator g, order q

 Commit protocol (commit to x):

 Receiver chooses random k and sends h=gk

 Sender sends c=grhx, for random r

 Unconditionally hiding:

 For every x,y there exist r,s s.t. r+kx = s+ky mod q

 Binding:

 If sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t.

grhx=gshy, then k = (r-s)/(y-x) mod q

12

Pedersen Commitments

April 30, 2013

 The basic idea

 Have V first commit to its challenge e using a perfectly-hiding

commitment

 The protocol

 P sends the first message of the commit protocol, (e.g.,

including g,h in the case of Pedersen commitments).

 V sends a commitment c=Com(e;r)

 P sends a message a

 V sends (e,r)

 P checks that c=Com(e;r) and if this holds it sends a reply z

 V accepts based on (x,a,e,z)

13

ZK from Sigma Protocols

April 30, 2013

 Soundness:

 The perfectly hiding commitment reveals nothing about e and

so soundness is preserved

 Zero knowledge

 In order to simulate:

 Receive a commitment from V.

 Have the Sigma simulator generate e and a. Send a’ to V.

 Receive V’s decommitment to e.

 Run Sigma protocol simulator again with e. Receive corresponding a.

 Rewind V and send it a. If V does not decommit to e then abort.

 Conclude by sending z

 Analysis…
14

ZK from Sigma Protocols

April 30, 2013

 Question

 If computational soundness suffices, can we use a

computationally-hiding commitment scheme?

 No:

 We should prove that cheating in the proof involves

distinguishing between commitments to different values

 Therefore the proof should receive a random commitment,

and see if P* can cheat

 The reduction fails because we only know if P* cheated

after we opened the commitment

15

ZK from Sigma Protocols

April 30, 2013

 Using Pedersen commitments, the entire DLOG proof

costs only 5 additional group exponentiations

 In Elliptic curve groups this is very little

16

Efficiency of ZK

April 30, 2013

 Is the previous protocol a proof of knowledge?

 It seems not to be

 The extractor for the Sigma protocol needs to obtain two

transcripts with the same a and different e

 Nothing prevents the prover from choosing its first message a

differently for every commitment string.

 In this protocol the prover sees a commitment to e before

sending a.

 Therefore if the extractor (playing the role of the verifier) changes

e, and therefore sends a different commitment, the prover changes

a, and extraction is impossible.

17

ZKPOK from Sigma Protocols

April 30, 2013

 Solution: use a trapdoor (equivocal) commitment scheme

 That is, a commitment that given a trapdoor, it is possible to

open it to any value.

 Pedersen has this property – given the discrete log k of h,

it is possible decommit to any value

 Suppose that you know the discrete log k of h.

 Commit to x: c = grhx

 To decommit to y, find s such that r+kx = s+ky

 This is easy if k is known: compute s = r+k(x-y) mod q

18

ZKPOK from Sigma Protocols

April 30, 2013

 The basic idea

 Have V first commit to its challenge e using a perfectly-hiding
trapdoor (equivocal) commitment

 The protocol (as before, but the commitment is equivocal)

 P sends the first message of the commit protocol (which
includes h in the case of Pedersen’s commitment).

 V sends a commitment c=Com(e;r)

 P sends a message a

 V sends (e,r)

 P checks that c=Com(e;r) and if this holds sends the
trapdoor for the commitment and z

 V accepts if the trapdoor is correct and (x,a,e,z) is accepting

19

ZKPOK from Sigma Protocols

April 30, 2013

20

ZKPOK from Sigma Protocols

)x,w(P)x(V

Sigma msg a

(e,r)

(k,z)

Verify h=gk

Verify (a,e,z)

h=gk, with random k

c=grhe

Verify c=grhe

April 30, 2013

 Why does this help?

 Zero-knowledge remains the same

 Extraction: after verifying the proof once, the extractor

obtains k and can rewind back to the decommitment of c

and send any (e,r)

 Efficiency:

 Just 6 exponentiations (very little)

21

ZKPOK from Sigma Protocols

April 30, 2013

 We typically want zero knowledge, so why bother with

sigma protocols?

 There are many useful general transformations

 E.g., parallel composition, compound statements

 The ZK and ZKPOK transformations can be applied on top of the

above, so obtain transformed ZK

 It is much harder to prove ZK than Sigma

 ZK – distributions and simulation

 Sigma: only HVZK and special soundness

22

ZK and Sigma Protocols

April 30, 2013

 Prove that the El Gamal encryption (u,v) under public-key

(g,h) is to the value m

 By encryption definition u=gr, v=hrm

 Thus (g,h,u,v/m) is a DH tuple

 So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH

tuple

23

Using Sigma Protocols and ZK

April 30, 2013

