Advanced Topics in Cryptography

Lecture 4

Benny Pinkas

Based on slides of Yehuda Lindell

Zero Knowledge

- Prover P, verifier V, language L
- ▶ P proves that $x \in L$ without revealing anything
 - Completeness: V always accepts when honest P and V interact
 - Soundness: V accepts with negligible probability when x∉L, for any P*
 - ightharpoonup Computational soundness: only holds when ${f P}^*$ is polynomial-time
- Zero-knowledge:
 - There exists a simulator S such that S(x) is indistinguishable from a real proof execution

ZK Proof of Knowledge

- Prover P, verifier V, relation R
- ▶ P proves that it knows a witness w for which $(x,w) \in R$ without revealing anything
 - The proof is zero knowledge as before
 - There exists an extractor K that can obtain from any P^* , a w such that $(x,w) \in R$, with the same probability that P^* convinces V.
- ► Equivalently:
 - The protocol securely computes the functionality $f_{zk}((x,w),x) = (-,R(x,w))$

Zero Knowledge

- An amazing concept; everything can be proven in zero knowledge
- Central to fundamental feasibility results of cryptography (e.g., GMW)
- But, can it be efficient?
 - It seemed that zero-knowledge protocols for "interesting languages" are complicated and expensive
- Zero knowledge is often avoided at significant cost

Sigma Protocols

- A way to obtain efficient zero knowledge
 - Many general tools
 - Many interesting languages can be proven with a sigma protocol

An Example – Schnorr DLOG

- Let G be a group of order q, with generator g
- ▶ P and V have input $h \in G$. P has w such that $g^w = h$
- P proves that to V that it knows DLOG_g(h)
 - ightharpoonup Chooses a random r and sends $a=g^r$ to V
 - ▶ **V** sends **P** a random $e \in \{0,1\}^t$
 - P sends z=r+ew mod q to V
 - \lor V checks that $g^z = ah^e$
- Completeness
 - $g^z = g^{r+ew} = g^r(g^w)^e = ah^e$

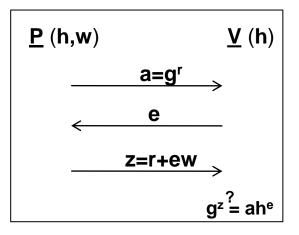
Schnorr's Protocol

Proof of knowledge

- Assume P can answer two queries e and
 e' for the same a
- Then, it holds that $g^z = ah^e$, $g^{z'} = ah^{e'}$
- Thus, $g^zh^{-e} = g^{z'}h^{-e'}$ and $g^{z-z'}=h^{e-e'}$
- Therefore $h = g^{(z-z')/(e-e')}$
- That is: DLOGg(h) = (z-z')/(e-e')

Conclusion:

If P can answer with probability greater than 1/2^t, then it must know the dlog



Schnorr's Protocol

- What about zero knowledge? This does not seem easy.
- ▶ But ZK holds if the verifier sends a <u>random</u> challenge e
- This property is called "Honest-verifier zero knowledge"
 - ▶ The simulation:
 - ► Choose a random **z** and **e**, and compute $\mathbf{a} = \mathbf{g}^{\mathbf{z}}\mathbf{h}^{-\mathbf{e}}$
 - Clearly, (a,e,z) have the same distribution as in a real run, and g^z=ah^e

This is not a very strong guarantee, but we will see that it yields efficient general ZK.

Definitions

- Sigma protocol template
 - Common input: P and V both have x
 - ▶ Private input: P has w such that $(x,w) \in R$
 - Protocol:
 - ▶ P sends a message a
 - ▶ V sends a <u>random</u> t-bit string e
 - ▶ P sends a reply z
 - ▶ **V** accepts based solely on (**x**,**a**,**e**,**z**)

Definitions

Completeness: as usual

Special soundness:

There exists an algorithm **A** that given any **x** and pair of transcripts $(\mathbf{a},\mathbf{e},\mathbf{z}),(\mathbf{a},\mathbf{e}',\mathbf{z}')$ with $\mathbf{e}\neq\mathbf{e}'$ outputs **w** s.t. $(\mathbf{x},\mathbf{w})\in\mathbf{R}$

Special honest-verifier ZK

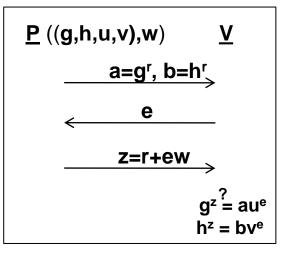
There exists an M that given any x and e outputs (a,e,z) which is distributed exactly like a real execution where V sends e

Sigma Protocol for proving a DH Tuple

- Relation R of Diffie-Hellman tuples
 - ▶ $(g,h,u,v) \in \mathbb{R}$ iff there exists w s.t. $u=g^w$ and $v=h^w$
 - Useful in many protocols
- ▶ This is a proof of membership, not of knowledge
- Protocol
 - ightharpoonup chooses a random r and sends $a=g^r$, $b=h^r$
 - V sends a random e
 - P sends z=r+ew mod q
 - V checks that g^z=au^e, h^z=bv^e

Sigma Protocol DH Tuple

- Completeness: as in DLOG
- Special soundness:
 - ▶ Given (a,b,e,z),(a,b,e',z'), we have g^z=au^e,g^{z'}=au^{e'},h^z=bv^e,h^{z'}=bv^{e'} and so like in DLOG on both
 - w = (z-z')/(e-e')
- Special HVZK
 - Given (g,h,u,v) and e, choose random z and compute
 - $a = g^z u^{-e}$
 - $b = h^z v^{-e}$



Basic Properties

Any sigma protocol is an interactive proof with soundness error 2^{-t}

- Properties of sigma protocols are invariant under parallel composition
- ▶ Any sigma protocol is a proof of knowledge with error 2^{-t}
 - The difference between the probability that **P*** convinces **V** and the probability that **K** obtains a witness is at most **2**-t
 - Proof needs some work

Tools for Sigma Protocols

- Prove compound statements
 - ▶ AND, OR, subset
- ZK from sigma protocols
 - ▶ Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols

AND of Sigma Protocols

- ▶ To prove the AND of multiple statements
 - Run all in parallel
 - Can use the same verifier challenge e in all
- Sometimes it is possible to do better than this
 - Statements can be batched
 - E.g. proving that many tuples are DDH can be done in much less time than running all proofs independently
 - Batch all into one tuple and prove

This is more complicated

• Given two statements and two appropriate Sigma protocols, wish to prove that at least one is true, without revealing which

▶ The solution – an ingenious idea from [CDS]

- Using the simulator, if **e** is known ahead of time it is possible to cheat
- We construct a protocol where the prover can cheat in one out of the two proofs

- ▶ The template for proving x_0 or x_1 :
 - **P** sends two first messages (a_0,a_1)
 - V sends a single challenge e
 - P replies with
 - Two challenges e_0, e_1 s.t. $e_0 \oplus e_1 = e_1$
 - ightharpoonup Two final messages $\mathbf{z_0}$, $\mathbf{z_1}$
 - ▶ **V** accepts if $e_0 \oplus e_1 = e$ and $(a_0, e_0, z_0), (a_1, e_1, z_1)$ are both accepting
- How does this work?

- **P** sends two first messages (a_0,a_1)
 - Suppose that **P** has a witness for x_0 (but not for x_1)
 - ▶ P chooses a random e_1 and runs SIM to get (a_1,e_1,z_1)
 - ightharpoonup P sends (a_0,a_1)
- V sends a single challenge e
- ▶ **P** replies with e_0, e_1 s.t. $e_0 \oplus e_1 = e$ and with z_0, z_1
 - \triangleright **P** already has $\mathbf{z_1}$ and can compute $\mathbf{z_0}$ using the witness
- Soundness
 - If P doesn't know a witness for x_1 , he can only answer for a single e_1
 - This means that e defines a single challenge e_0 , like in a regular proof

Special soundness

- Relative to first message (a_0,a_1) , and two different e,e', it holds that either $e_0 \neq e'_0$ or $e_1 \neq e'_1$ (because $e_0 \oplus e_1 = e$ and $e'_0 \oplus e'_1 = e'$).
- Thus, we will obtain two different continuations for at least one of the statements, and from the special soundness of a single protocol it is possible to compute a witness for that statement, which is also a witness for the OR statement.
- Honest verifier ZK
 - ightharpoonup Can choose both e_0, e_1 , so no problem
- Note: it is possible to prove an OR of different statements using different protocols

OR of Many Statements

- Prove k out of n statements $x_1,...,x_n$
 - ► A = set of indices that prover knows how to prove; the other indices are denoted as **B**
 - Use secret sharing with threshold n-k
 - Field elements 1,2,...,n, polynomial **f** with free coefficient **s**
 - ▶ Share of **s** for party P_i : f(i)

Prover

- ▶ For every $i \in B$, prover generates (a_i, e_i, z_i) using SIM
- For every $j \in A$, prover generates a_i as in protocol
- Prover sends $(a_1,...,a_n)$

OR of Many Statements

- Prover sent $(a_1,...,a_n)$
- Verifier sends a random field element e∈F
- ▶ Prover finds the polynomial f of degree n-k passing through all (i,e_i) and (0,e) (for $i \in B$)
 - ▶ The prover computes $e_i = f(j)$ for every $j \in A$
 - The prover computes \mathbf{z}_j as in the protocol, based on transcript $\mathbf{a}_i, \mathbf{e}_i$
- Soundness follows because there are |F| possible vectors and the prover can only answer one

General Compound Statements

- This can be generalized to any monotone formula (meaning that the formula contains AND/OR but no negations)
 - See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO'94.

- A tool: commitment schemes
- Enables to commit to a chosen value while keeping secret, with the ability to reveal the committed value later.
- ▶ A commitment has two properties:
 - Binding: After sending the commitment, it is impossible for the committing party to change the committed value.
 - Hiding: By observing the commitment, it is impossible to learn what is the committed value. (Therefore the commitment process must be probabilistic.)
- It is possible to have unconditional security for any one of these properties, but not for both.

The basic idea

Have V first commit to its challenge e using a perfectly-hiding commitment

The protocol

- ightharpoonup sends the first message α of the commit protocol
- **V** sends a commitment $c=Com_{\alpha}(e;r)$
- P sends a message a
- V sends (e,r)
- **P** checks that $c=Com_{\alpha}(e;r)$ and if yes sends a reply **z**
- **V** accepts based on (**x,a,e,z**)

Soundness:

The perfectly hiding commitment reveals nothing about **e** and so soundness is preserved

Zero knowledge

- In order to simulate:
 - ▶ Send a' generated by the simulator, for a random e'
 - Receive V's decommitment to e
 - Run the simulator again with e, rewind V and send a
 - □ Repeat until **V** decommits to **e** again
 - Conclude by sending z
- ► Analysis...

Question

If computational soundness suffices, can we use a computationally-hiding commitment scheme?

No:

- Try to prove that cheating in the proof involves distinguishing commitments
- ▶ Receive a random commitment, and see if P* can cheat
 - ▶ The reduction fails because we only know if P* cheated after we opened the commitment

Pedersen Commitments

- Highly efficient perfectly-hiding commitments (two exponentiations for string commit)
 - Parameters: generator g, order q
 - **Commit protocol** (commit to **x**):
 - \blacktriangleright Receiver chooses random **k** and sends **h**= g^k
 - Sender sends c=g^rh^x, for random r
 - Hiding:
 - For every **x,y** there exist **r,s** s.t. **r+kx = s+ky mod q**
 - **Binding:**
 - If sender can open commitment in two ways, i.e. find (x,r), (y,s) s.t. $g^rh^x=g^sh^y$, then k=(r-s)/(y-x) mod q

Efficiency of ZK

- Using Pedersen commitments, the entire DLOG proof costs only 5 additional group exponentiations
 - In Elliptic curve groups this is very little

- Is the previous protocol a proof of knowledge?
 - It seems not to be
 - The extractor for the Sigma protocol needs to obtain two transcripts with the same **a** and different **e**
 - The prover may choose its first message **a** differently for every commitment string.
 - But in this protocol the prover sees a commitment to **e** before sending **a**.
 - So if the extractor changes e, the prover changes a

- Solution: use a trapdoor (equivocal) commitment scheme
 - Given a trapdoor, it is possible to open the commitment to any value
- Pedersen has this property given the discrete log k of h, can decommit to any value

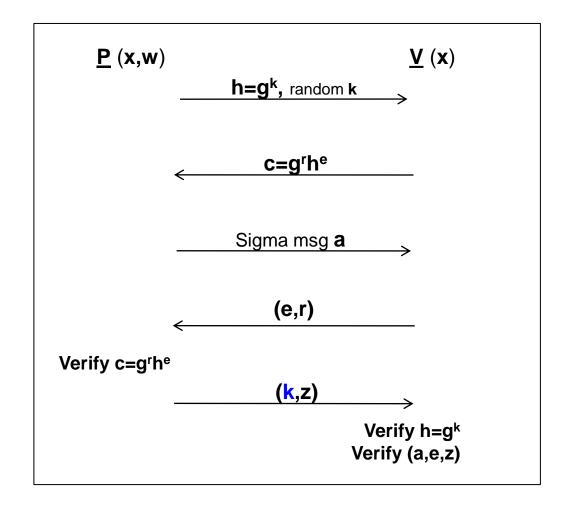
 - To decommit to y, find s such that r+kx = s+ky
 - This is easy if k is known: compute $s = r+k(x-y) \mod q$

The basic idea

Have **V** first commit to its challenge **e** using a perfectly-hiding trapdoor (equivocal) commitment

The protocol

- P sends the first message α of the commit protocol (e.g., including h in the case of Pedersen commitments).
- **V** sends a commitment $c=Com_{\alpha}(e;r)$
- P sends a message a
- V sends (e,r)
- P checks that $c=Com_{\alpha}(e;r)$ and if yes sends the **trapdoor** for the commitment and **z**
- **V** accepts if the **trapdoor** is correct and (**x,a,e,z**) is accepting



- Why does this help?
 - ▶ **Zero-knowledge** remains the same
 - **Extraction:** after verifying the proof once, the extractor obtains **k** and can rewind back to the decommitment of **c** and send any (**e**',**r**')
- Efficiency:
 - Just 6 exponentiations (very little)

ZK and Sigma Protocols

- We typically want zero knowledge, so why bother with sigma protocols?
 - There are many useful general transformations
 - ▶ E.g., parallel composition, compound statements
 - The ZK and ZKPOK transformations can be applied on top of the above, so obtain transformed ZK
 - It is much harder to prove ZK than Sigma
 - ▶ ZK distributions and simulation
 - Sigma: only HVZK and special soundness

Using Sigma Protocols and ZK

- Prove that the El Gamal encryption (u,v) under public-key (g,h) is to the value m
 - ▶ By encryption definition $u=g^r$, $v=h^r \cdot m$
 - Thus (g,h,u,v/m) is a DH tuple
 - So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH tuple

Efficient Coin Tossing

- \triangleright P₁ chooses a random x, sends (g,h,g^r,h^rx)
- ▶ P₁ ZK-proves that it knows the encrypted value
 - Suffices to prove that it knows the discrete log of h
- \triangleright P₂ chooses a random y and sends to P₁
- P₁ sends x (without decommitting)
- ▶ P₁ ZK-proves that encrypted value was x
- Both parties output x+y

Cost: O(I) exponentiations