Advanced Topics in Cryptography

Lecture 10
Unconditionally Secure Multi-
Party Computation

Benny Pinkas

page 1 June 4, 2013



Overview

» “Completeness theorems for non-cryptographic fault-
tolerant distributed computation”

M. Ben-Or, S. Goldwasser, A.Wigderson, 1988.

Published concurrently with “Multiparty unconditionally secure
protocols” Chaum, Crepau, Damgard.

» Published after the results of Yao and GMW, with the
motivation of obtaining results without any intractability
assumptions.

2 June 4, 2013



Overview

» “Completeness theorems for non-cryptographic fault-
tolerant distributed computation”

M. Ben-Or, S. Goldwasser, A.Wigderson, 1988.

» The setting
A complete synchronous network of n parties
Each party P, has an input x.
Communication channels between parties are secure

The solution for the malicious case requires a broadcast channel
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Overview (contd.)

» The function f(x,,...,x,) is represented by an arithmetic
circuit over a field F (say, modulo a large prime)

Contains addition and multiplication gates in F
Can be more compact than a Boolean circuit
We need only care about deterministic functionalities:

A randomized functionality (r; x|,...,x) can be computed by
each party providing (r,x.), and the circuit computing
and using r=r ®...®r.
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Overview (contd.)

» The construction provides unconditional security
Against semi-honest adversaries controlling t<n/2 parties
Against malicious adversaries controlling t<n/3 parties

» Unlike the GMW construction, which is based on
cryptographic assumptions

oblivious transfer
ZK proofs
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Main tool — secret sharing

» t-out-of-n secret sharing

» Given a secret s, provide shares to n parties, s.t.
Any t shares enable the reconstruction of the secret
Any t-| shares reveal nothing about the secret

» Consider 2-out-of-n secret sharing.
Define a line which intersects the
Y axis at S

The shares are points on the line 1 2 3
Any two shares define S
A single share reveals nothing
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t-out-of-n secret sharing

» Fact: Let F be a field. Any d+1 pairs (a;, b,) define a unique
polynomial P of degree =< d,s.t. P(a, )=b.. (assuming d <

[F1)-

» Shamir’s secret sharing scheme:
The secret S is an element in a field (say, in Zp).

Define a polynomial P of degree t-1 by choosing random
coefficients a,,...,a, , and defining

P(x) = a,_ x"'+...+a,x+S.

The share of party P, is (j, P(j) ).
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t-out-of-n secret sharing

» Reconstructing the secret:
Assume we have P(x,),...,P(x,).

Use Lagrange interpolation to compute the unique
polynomial of degree < t-1 which agrees with these points.

Output the free coefficient of this polynomial.

» Lagrange interpolation
P(x) = 2 =1 P(x) Li(x)
where Li(x)=[T(x-x; ) / [1;(x-%;)
(Note that L, (x;)=1,L; (x)=0 for j#i.
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Properties of Shamir’s secret sharing

» Perfect secrecy: Any t-1 shares give no information about the
secret, Pr(secret=s | P(l),..., P(t-1)) = Pr(secret=s).
» Proof:
Intuition from 2-out-of-n secret sharing:
The polynomial is generated by choosing a random coefficient a
and defining P(x)= a-x+s.
Suppose that the adversary knows the share P(1)=a-:|+s.

For any value of s, there is a one-to-one correspondence between
a and P(1) (a=P(I)-s).
Since a is uniformly distributed, so is P(l)

Therefore P(I) does not reveal any
information about s.
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Properties of Shamir’s secret sharing

» Perfect secrecy:Any t-1 shares give no information about
the secret.

» Proved by showing that, even given S, any t-1 shares are uniformly
distributed.

» Proof:

The polynomial is generated by choosing a random polynomial of
degree t-1, subject to P(0)=S.

Suppose that the adversary knows the shares P(1),...,P(t-1).

The values of P(l),...,P(t-1) are defined by an invertible set of t-|
linear equations of a|,...,a_,s.

P(i) = 2=y _cr (1) 13 +s.
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Properties of Shamir’s secret sharing

» Proof (cont.):
The values of P(l),...,P(t-1) are defined by an invertible set of
t-1 linear equations of a,...,a_, s.
P(x;)) = 2oy 1 (1) | a +s.
For any possible value of s, there is a exactly one set of values
of a|,...,a._; which gives the values P(I),...,P(t-1).

This set of a|,...,a._, can be found by solving a linear
system of equations.

Since a,,...,a,, are uniformly distributed, so are the values of

P(x,),...,P(x.)-
=P(x,),...,P(x. ) reveal nothing about s.
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Additional properties of Shamir’s secret
sharing

» |ldeal size:

Each share is the same size as the secret.

» Homomorphic property:
Suppose P(1),...,P(n) are shares of S,
and P’(l),...,P’(n) are shares of S,
then P(1)+P’(l),... ,P(n)+P’(n) are shares of S+S’.
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The BGW protocol

» Input sharing phase
» Computation phase

» Output reconstruction phase

» Main idea:

for every wire, the parties will know a secret sharing of the
value which passes through that wire.
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BGW protocol — input phase

» Let t<n/2 be a bound on the number of corrupt parties.
» Each P, generates a (t+|)-out-of-n sharing of its input x.
Namely, chooses a polynomial f,() over F s.t. f(0)=x.

Any subset of t shares does not leak any information about x,
t+| shares reveal x,

» P; sends to each P, the value fj(j).

» The protocol continues from the input wires to the
output wires.

14 June 4, 2013



Computation phase

» All parties participate in the computation of every gate
Already know a sharing of its input wires
Must generate a sharing of the output wire

» Addition gate:c = atb

Must generate a polynomial f () of degree t, which is random
except for f_(0)=a+b. Each P, learns f_(i).

Define f,() = f,( )+,( )
Each Pi sets c.=a+b.=f_(i)+f,(i)=f_(i)
No interaction is needed!

» What about multiplication gates!?
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Output phase

» Easier to first describe the output phase than to describe
the protocol for multiplication gates

» Output wires

If output wire y. must be learned by P, then all parties send
it their shares of y..

P. reconstructs the secret and learns the output value.
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Computation phase — multiplication gates

» ¢ =ab. First attempt:

Define f,,() = f,() ().

Each P, computes a, b, = f_(i) f,(i) = f,,(i)-

Indeed, f,, (0) = ab.

But the degree of f is 2t,and f, is not a random polynomial.
» Interpolation:

f,, is of degree 2t<n,and f,(0) = a b.

Therefore 1 Lagrange coefficients r,...,r, s.t.

f,(0)=ab=rf, (I)+...r f (n)= r ab+...r,ab

n n=—n°®

Each r. is easily computable.
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Computation phase — multiplication gates

» Each P,
Has a, b,
Creates a random polynomial g.( ) of degree t s.t. g(0)=a, b,

» Consider g(x)=2;; ;i g(x)
of degree t
80)=2izy 1 8(0) = Zimy_nrivab = Xy 1 f(i) =a-b.
This is exactly the polynomial we need.
Must provide each P, with a share of g().
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Computation phase — multiplication gates

» Each P,

Creates a random polynomial g( -) of degree t s.t. g(0)=a. b.
Define g(x)=Z,-; _,r; (x), of degree t.g(0)=X,., _,r,&(0) =ab.

» P, sends to every P, the value g(j)

» Every P, receives g(j),....g,(j), computes g(j)= % I ()
» This is the desired sharing of a - b.
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Properties

» Correctness is straightforward

» Overhead:
O(n?) messages for every multiplication gate

# of rounds linear in depth of circuit (where only
multiplication gates count)
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Security

» Main idea: every set of t players, receives in each round
values which are t-wise independent, and therefore
uniformly distributed.

Therefore no information about the actual wire values are
leaked.
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Simulation based proof

» Recall what we showed

In (t+1)-out-of-n secret sharing, any t shares are uniformly
distributed, independently of the secret.

» Suppose first that multiplication is computed by an oracle
(this is the f . hybrid model)

mult
The simulator obtains the inputs and outputs of the t
corrupt parties

The transcript of a party includes its input, randomness used,
all messages received.
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Simulation based proof

» Adversary controls a set | of t</2 parties.

» The simulator:

23

VP.€], set input z=x.. V P.¢], set input z=0.
Share inputs z, according to protocol.
Addition gates: add shares as in protocol.

Mult gates: provide P.€] with shares of a random sharing of
the value 0.

Simulation is correct since t shares of any value are
uniformly distributed.
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Simulation based proof

Output stage:
V wire, the simulator already defined shares for all P.€].

Let w be an output wire of P,e]. The simulator has the
output value y,, and the t shares of P.<|.

The simulator interpolates the t-degree polynomial f, going

through these values. It then simulates receiving the shares
f (i) fromall P.z].

Let w be an output wire of P.¢]. For all P,€J, the simulator
sends the corresponding share to P..
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Simulating the multiplication protocol

» Recall, the multiplication protocol
P. creates a random poly g( -) of deg t s.t. g(0)=a, b,
P, sends to V P, the value g(j), and receive shares g(i)
P, computes its share as g(i)= X-, _r; g(i)-

» Simulation V P.€]:
Create a random poly g.( ‘) of deg t s.t. g(0)=P.’s share
Send to every P; the value gj)
VP;¢] simulate receipt of a random share g(i)
Compute share of wire value as g(i)= %, r; g(i)
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Security against malicious parties

» Aka security against Byzantine adversaries

» Possible problems in using the previous protocol:

When sharing its input, P, might send values of a polynomial
of degree greater than t.

As a result, different subsets of the clients might recover
different values as the secret.

Parties might send incorrect shares

How can we interpolate in this case!?

» Protocol secure against t<n/3
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Major tool — Verifiable Secret Sharing (VSYS)
» Sharing stage

Add elements to the shares so that parties are assured to

receive values of a polynomial of degree t (even if the dealer
is malicious)

» Recovery stage

As long as t<n/3 shares are corrupt, use error correction
techniques to recover the secret.

Based on the fact that Shamir’s secret sharing scheme is a
Reed-Solomon code, which can correct up to t<n/3 errors.
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The Reed-Solomon code

» Reed-Solomon code
A linear [n,k,d]-code, with k=t+1,and d=n-t.
The message is (mg,...m,).

Use it as the coefficients of a degree t polynomial, P_.

Codeword is (P (1),...,P_.(n)).

Two codewords differ in at least d=n-t locations.
7 efficient decoding correcting (n-t-1)/2 errors.
If t<n/3, correcting up to t errors.
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Using the Reed-Solomon code

» Usage:

Let P() be a polynomial of degree t. (E.g., the polynomial used
for (t+1)-out-of-n secret sharing.)

If instead of receiving (P(1),P(2),...,P(n)), we receive up to
t<n/3 corrupt values, can still recover P.

(And in particular, recover P(0), the secret.)

» Conclusion:
Can easily handle corrupt parties which send corrupt shares.

Need to focus on forcing the dealer to distribute shares
consistent with a t-degree polynomial.
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Bivariate polynomials
» f(xy) = zi=0...t2j=0...t a;; X'yl

Defined by (t+1)? coefficients

Claim: f(x,y) can be defined by t+| univariate polynomials:
Given t+| polynomials of degree t:f,(x),...,f., (x) there
exists a single bivariate polynomial of degree t such that
fox, 1)=f,(x), ..., f(x,t+ 1)=f, (X)

f(x,3) = f3(X)

1(x,2) = 1,(x)

f(x,1) = ,(x)
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VSS using Bivariate polynomials - Step 1
(t+1)-out-of-n secret sharing

» Dealer defines a random bivariate polynomial f(x,y) of
degree t, s.t. f(0,0)= secret.

» Sends to P. the share f.(x)=f(x,i). (t-deg poly)
By the claim, any t+1| shares suffice to reveal secret.

» Sends to P. the dual share g (x)=f(i,x).
Will be used for checking shares received from other parties

1(1,) = gi(x)

f(x,1) = 1,(x)

4

V'S
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VSS using Bivariate polynomials

» Claim: Vsubset | of size t, the shares and dual shares of

P

32

.€) do not reveal the secret.

Assume wlog |=1,2,...,t.

f,(x),...,f.(x), each of degree t, enforce t (t+1) constraints of
the bivariate polynomial f.

g,(x),...,g.(x), each add another constraint.

Total # of constraints is t(t+1)+t=t2+2t=(t+1)%-1. None of
them defines f(0,0) directly.

V'
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VSS using Bivariate polynomials — Step 2

» Each party P
V j, send f,(j) and g(j) to P..
V j, let (u,v,) the values received from P..

If u; # g(j) or v, # f(j), then broadcast “complaint(i, j, f,(j), g(j)) -
(the two values P, was

. supposed to receive)
urfj(rl):gi(])
Py -
gi( ) ,,,,,, gi(x) vi=g;()=F()
f(x)
Af(x) whom shoU_ld we
| believe?
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VSS using Bivariate polynomials — Step 3

» The dealer:
Upon receiving the message “complaint(i, j, f.(j), g(j))”’ sent by
P,
check that f.(j)=f(i,j) and that g.(j)=f(j,i)-
If the checks fail, broadcast polynomials: reveal(i,f.(x),g:(x))-

(Namely, if P, sent an incorrect complaint, broadcast the
shares that it received from dealer.)

» Now, whom should the parties believe, P, or the dealer?
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VSS using Bivariate polynomials — Step 4

» Each P,
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If P, views two messages complaint(k,j,u,,v,) and
complaint(j,k,u,,v,), and the dealer did not broadcast a
corresponding reveal message, go to 3.

If P, views a message reveal(j,f,(x),g(y)), check if it agrees
with P/'s shares: f(j)=g;(i) and g(j)=f(i). If the check succeeds,
broadcast “good” (i.e., | agree with the dealer).

If at least n-t parties broadcasted “good” then use the
shares that they have. Otherwise they abort.
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VSS Security proof - Sketch

» Assume dealer is honest

An honest P; complains only if a corrupt P, sends it incorrect
values. But since the complaint of P, contains good values,
the dealer does not reveal P|'s share.

If a corrupt P, complains with incorrect values, dealer sends
a reveal message of P.’s shares,

which passes the test of the n-t honest parties,
which then send n-t good messages

and therefore output the correct shares which enable to
recover the secret.
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VSS Security proof - Sketch

» Assume dealer is corrupt
Suppose P,,P, are honest and receive inconsistent shares:
filk)=g.(i), or g(k)#h ().
Both parties complain, and therefore dealer must send reveal
message or else no honest party broadcasts good.

The shares are used only if n-t parties output “good”. Some
might be corrupt, but at least (n-t)-t=t+| of them are honest.

Their polynomials agree with those revealed by the dealer.

These t+1| polynomials define a unique bivariate poly, which
defines the secret.

That’s all that we need.
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The full protocol

» Inputs are shared using VSS.
Therefore dealer deals consistent shares.

» Addition gates are trivial.

» Multiplication gates:
Must ensure that each party multiplies its own shares.

Must use a VSS to perform the sharing defined by the
protocol.

The full description and proof are quite intricate.

38 June 4, 2013



Overhead

» No public key operations are needed!

» Input sharing step is more complicated than in the semi-
honest case
Length of messages increases by O(n)

But this protocol is run only once, and has O(l) rounds.
» Multiplication gates

Requires the use of aVSS
Message length increases by O(n)
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