## Advanced Topics in Cryptography

## Lecture 10 Unconditionally Secure Multi-Party Computation

Benny Pinkas

#### Overview

- "Completeness theorems for non-cryptographic faulttolerant distributed computation"
  - M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.
  - Published concurrently with "Multiparty unconditionally secure protocols" Chaum, Crepau, Damgard.
- Published after the results of Yao and GMW, with the motivation of obtaining results without any intractability assumptions.

#### Overview

- "Completeness theorems for non-cryptographic faulttolerant distributed computation"
  - M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.
- The setting
  - ▶ A complete synchronous network of n parties
  - Each party  $P_i$  has an input  $x_i$
  - Communication channels between parties are secure
  - The solution for the malicious case requires a broadcast channel

## Overview (contd.)

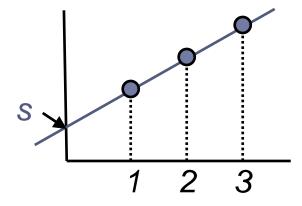
- The function  $f(x_1,...,x_n)$  is represented by an arithmetic circuit over a field F (say, modulo a large prime)
  - Contains addition and multiplication gates in F
  - ▶ Can be more compact than a Boolean circuit
  - We need only care about deterministic functionalities:
  - A randomized functionality  $f(r; x_1,...,x_n)$  can be computed by each party providing  $(r_i,x_i)$ , and the circuit computing and using  $r=r_1\oplus...\oplus r_n$ .

## Overview (contd.)

- The construction provides unconditional security
  - Against semi-honest adversaries controlling t<n/2 parties</p>
  - Against malicious adversaries controlling t<n/3 parties</p>
- Unlike the GMW construction, which is based on cryptographic assumptions
  - oblivious transfer
  - ZK proofs

## Main tool – secret sharing

- t-out-of-n secret sharing
- Given a secret s, provide shares to n parties, s.t.
  - Any t shares enable the reconstruction of the secret
  - ▶ Any t-1 shares reveal nothing about the secret
- ▶ Consider 2-out-of-*n* secret sharing.
  - Define a line which intersects the Y axis at S
  - The shares are points on the line
  - Any two shares define S
  - A single share reveals nothing



## t-out-of-n secret sharing

▶ Fact: Let F be a field. Any d+1 pairs  $(a_i, b_i)$  define a unique polynomial P of degree  $\leq d$ , s.t.  $P(a_i)=b_i$ . (assuming d < |F|).

- ▶ Shamir's secret sharing scheme:
  - The secret S is an element in a field (say, in Zp).
  - Define a polynomial P of degree t-1 by choosing random coefficients  $a_1, \ldots, a_{t-1}$  and defining

$$P(x) = a_{t-1}x^{t-1} + ... + a_1x + \underline{S}.$$

▶ The share of party  $P_i$  is (j, P(j)).

## t-out-of-n secret sharing

#### Reconstructing the secret:

- Assume we have  $P(x_1),...,P(x_t)$ .
- Use Lagrange interpolation to compute the unique polynomial of degree ≤ t-1 which agrees with these points.
- Output the free coefficient of this polynomial.

#### Lagrange interpolation

- $P(x) = \sum_{i=1..t} P(x_i) \cdot L_i(x)$
- where  $L_i(x) = \prod_{j \neq i} (x x_j) / \prod_{j \neq i} (x_i x_j)$ (Note that  $L_i(x_i) = I$ ,  $L_i(x_j) = 0$  for  $j \neq i$ .)

## Properties of Shamir's secret sharing

- Perfect secrecy: Any t-I shares give no information about the secret,  $Pr(secret=s \mid P(I),...,P(t-I)) = Pr(secret=s)$ .
- Proof:
  - Intuition from 2-out-of-n secret sharing:
  - The polynomial is generated by choosing a random coefficient a and defining  $P(x) = a \cdot x + s$ .
  - ▶ Suppose that the adversary knows the share  $P(1)=a \cdot 1+s$ .
  - For any value of s, there is a one-to-one correspondence between a and P(1) (a=P(1)-s).
  - Since a is uniformly distributed, so is P(1)
    - ► Therefore P(I) does not reveal any information about s.

## Properties of Shamir's secret sharing

- Perfect secrecy: Any t-1 shares give no information about the secret.
- Proved by showing that, even given S, any t-I shares are uniformly distributed.
- Proof:
  - The polynomial is generated by choosing a random polynomial of degree t-1, subject to P(0)=S.
  - ▶ Suppose that the adversary knows the shares P(1),...,P(t-1).
  - The values of P(1),...,P(t-1) are defined by an <u>invertible</u> set of t-1 linear equations of  $a_1,...,a_{t-1}$ , s.
    - ▶  $P(i) = \sum_{j=1,...,t-1} (i)^{j} a_{j} + s.$

## Properties of Shamir's secret sharing

#### Proof (cont.):

- The values of P(1),...,P(t-1) are defined by an <u>invertible</u> set of t-1 linear equations of  $a_1,...,a_{t-1}$ , s.
  - ▶  $P(x_i) = \sum_{j=1,...,t-1} (i)^j a_j + s.$
- For any possible value of s, there is a exactly one set of values of  $a_1, ..., a_{t-1}$  which gives the values P(1), ..., P(t-1).
  - This set of  $a_1,...,a_{t-1}$  can be found by solving a linear system of equations.
- Since  $a_1,...,a_{t-1}$  are uniformly distributed, so are the values of  $P(x_1),...,P(x_{t-1})$ .
  - $\Rightarrow P(x_1),...,P(x_{t-1})$  reveal nothing about s.

# Additional properties of Shamir's secret sharing

- Ideal size:
  - Each share is the same size as the secret.
- ▶ Homomorphic property:
  - Suppose P(I),...,P(n) are shares of S, and P'(I),...,P'(n) are shares of S', then P(I)+P'(I),...,P(n)+P'(n) are shares of S+S'.

## The BGW protocol

- Input sharing phase
- Computation phase
- Output reconstruction phase
- Main idea:
  - for every wire, the parties will know a secret sharing of the value which passes through that wire.

## BGW protocol – input phase

- ▶ Let t<n/2 be a bound on the number of corrupt parties.
- ▶ Each  $P_i$  generates a (t+1)-out-of-n sharing of its input  $x_i$ .
  - Namely, chooses a polynomial  $f_i()$  over  $F_i$ , s.t.  $f_i(0) = x_i$
  - Any subset of t shares does not leak any information about x<sub>i</sub>
  - t+1 shares reveal x<sub>i</sub>
- $ightharpoonup P_i$  sends to each  $P_j$  the value  $f_i(j)$ .
- The protocol continues from the input wires to the output wires.

## Computation phase

- All parties participate in the computation of every gate
  - Already know a sharing of its input wires
  - Must generate a sharing of the output wire
- Addition gate: c = a+b
  - Must generate a polynomial  $f_c()$  of degree t, which is random except for  $f_c(0)=a+b$ . Each  $P_i$  learns  $f_c(i)$ .
  - ▶ Define  $f_c(\cdot) = f_a(\cdot) + f_b(\cdot)$
  - ► Each Pi sets  $c_i = a_i + b_i = f_a(i) + f_b(i) = f_c(i)$
  - No interaction is needed!
- What about multiplication gates?

#### Output phase

 Easier to first describe the output phase than to describe the protocol for multiplication gates

#### Output wires

- If output wire  $y_i$  must be learned by  $P_i$ , then all parties send it their shares of  $y_i$ .
- P<sub>i</sub> reconstructs the secret and learns the output value.

#### Computation phase – multiplication gates

#### $c = a \cdot b.$ First attempt:

- ▶ Define  $f_{ab}(\cdot) = f_a(\cdot) f_b(\cdot)$ .
- ► Each  $P_i$  computes  $a_i \cdot b_i = f_a(i) \cdot f_b(i) = f_{ab}(i)$ .
- Indeed,  $f_{ab}(0) = a \cdot b$ .
- ▶ But the degree of  $f_{ab}$  is 2t, and  $f_{ab}$  is not a random polynomial.

#### Interpolation:

- $f_{ab}$  is of degree 2t<n, and  $f_{ab}(0) = a \cdot b$ .
- ▶ Therefore  $\exists$  Lagrange coefficients  $r_1,...,r_n$  s.t.

$$f_{ab}(0) = a \cdot b = r_1 f_{ab}(1) + \dots + r_n f_{ab}(n) = r_1 \cdot a_1 b_1 + \dots + r_n \cdot a_n b_n.$$

 $\triangleright$  Each  $r_i$  is easily computable.

#### Computation phase – multiplication gates

#### ► Each P<sub>i</sub>

- ▶ Has a<sub>i</sub> ·b<sub>i</sub>
- ▶ Creates a random polynomial  $g_i(\cdot)$  of degree t s.t.  $g_i(0)=a_i\cdot b_i$
- Consider  $g(x) = \sum_{i=1...n} r_i g_i(x)$ 
  - of degree t

  - This is exactly the polynomial we need.
  - Must provide each  $P_i$  with a share of g().

#### Computation phase – multiplication gates

- ▶ Each P<sub>i</sub>
  - ▶ Creates a random polynomial  $g_i(\cdot)$  of degree t s.t.  $g_i(0)=a_i \cdot b_i$
  - ▶ Define  $g(x) = \sum_{i=1...n} r_i g_i(x)$ , of degree t.  $g(0) = \sum_{i=1...n} r_i g_i(0) = a b$ .
- $ightharpoonup P_i$  sends to every  $P_j$  the value  $g_i(j)$
- ▶ Every  $P_j$  receives  $g_1(j),...,g_n(j)$ , computes  $g(j) = \sum_{i=1...n} r_i g_i(j)$
- $\blacktriangleright$  This is the desired sharing of a  $\cdot$  b.

## Properties

Correctness is straightforward

#### Overhead:

- ▶ O(n²) messages for every multiplication gate
- # of rounds linear in depth of circuit (where only multiplication gates count)

## Security

- Main idea: every set of t players, receives in each round values which are t-wise independent, and therefore uniformly distributed.
  - Therefore no information about the actual wire values are leaked.

## Simulation based proof

- Recall what we showed
  - In (t+1)-out-of-n secret sharing, any t shares are uniformly distributed, independently of the secret.
- Suppose first that multiplication is computed by an oracle (this is the f<sub>mult</sub> hybrid model)
  - The simulator obtains the inputs and outputs of the t corrupt parties
  - The transcript of a party includes its input, randomness used, all messages received.

## Simulation based proof

- ▶ Adversary controls a set J of t</2 parties.</p>
- The simulator:
  - ▶  $\forall P_i \in J$ , set input  $z_i = x_i$ .  $\forall P_i \notin J$ , set input  $z_i = 0$ .
  - $\triangleright$  Share inputs  $z_i$  according to protocol.
  - Addition gates: add shares as in protocol.
  - Mult gates: provide  $P_i \in J$  with shares of a random sharing of the value 0.
  - Simulation is correct since t shares of any value are uniformly distributed.

## Simulation based proof

- Output stage:
  - $\forall$  wire, the simulator already defined shares for all  $P_i \in J$ .
  - Let w be an output wire of  $P_i \in J$ . The simulator has the output value  $y_w$ , and the t shares of  $P_i \in J$ .
  - The simulator interpolates the t-degree polynomial  $f_w$  going through these values. It then simulates receiving the shares  $f_w(i)$  from all  $P_i \notin J$ .
  - Let w be an output wire of  $P_j \notin J$ . For all  $P_i \in J$ , the simulator sends the corresponding share to  $P_i$ .

## Simulating the multiplication protocol

#### Recall, the multiplication protocol

- P<sub>i</sub> creates a random poly  $g_i(\cdot)$  of deg t s.t.  $g_i(0)=a_i \cdot b_i$
- ▶  $P_i$  sends to  $\forall P_j$  the value  $g_i(j)$ , and receive shares  $g_j(i)$
- ▶  $P_i$  computes its share as  $g(i) = \sum_{j=1...n} r_j g_j(i)$ .

#### ▶ Simulation $\forall P_i \in J$ :

- ▶ Create a random poly  $g_i(\cdot)$  of deg t s.t.  $g_i(0)=P_i$ 's share
- Send to every  $P_j$  the value  $g_i(j)$
- $\forall P_j \notin J$  simulate receipt of a random share  $g_j(i)$
- ► Compute share of wire value as  $g(i) = \sum_{j=1...n} r_j g_j(i)$

## Security against malicious parties

- Aka security against Byzantine adversaries
- Possible problems in using the previous protocol:
  - When sharing its input, P<sub>i</sub> might send values of a polynomial of degree greater than t.
    - As a result, different subsets of the clients might recover different values as the secret.
  - Parties might send incorrect shares
    - ▶ How can we interpolate in this case?
- Protocol secure against t<n/3</p>

#### Major tool - Verifiable Secret Sharing (VSS)

#### Sharing stage

Add elements to the shares so that parties are assured to receive values of a polynomial of degree t (even if the dealer is malicious)

#### Recovery stage

- As long as t<n/3 shares are corrupt, use error correction techniques to recover the secret.
- Based on the fact that Shamir's secret sharing scheme is a Reed-Solomon code, which can correct up to t<n/3 errors.</p>

#### The Reed-Solomon code

#### Reed-Solomon code

- A linear [n,k,d]-code, with k=t+1, and d=n-t.
- The message is  $(m_0, ..., m_t)$ .
- ▶ Use it as the coefficients of a degree t polynomial, P<sub>m</sub>.
- ▶ Codeword is  $\langle P_m(1),...,P_m(n) \rangle$ .
- ▶ Two codewords differ in at least d=n-t locations.
- ▶ ∃ efficient decoding correcting (n-t-1)/2 errors.
- ▶ If t<n/3, correcting up to t errors.

### Using the Reed-Solomon code

#### Usage:

- Let P() be a polynomial of degree t. (E.g., the polynomial used for (t+1)-out-of-n secret sharing.)
- If instead of receiving ⟨P(I),P(2),...,P(n)⟩, we receive up to t<n/3 corrupt values, can still recover P.</li>
  (And in particular, recover P(0), the secret.)

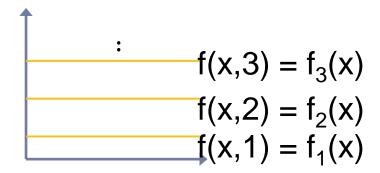
#### Conclusion:

- Can easily handle corrupt parties which send corrupt shares.
- Need to focus on forcing the dealer to distribute shares consistent with a t-degree polynomial.

## Bivariate polynomials

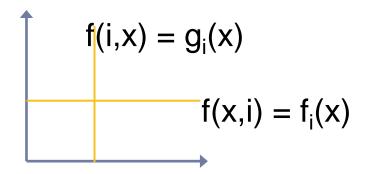
$$f(x,y) = \sum_{i=0...t} \sum_{j=0...t} a_{i,j} x^{i} y^{j}$$

- ▶ Defined by  $(t+1)^2$  coefficients
- $\triangleright$  Claim: f(x,y) can be defined by t+1 univariate polynomials:
  - Given t+1 polynomials of degree t:  $f_1(x),...,f_{t+1}(x)$  there exists a single bivariate polynomial of degree t such that  $f(x,1)=f_1(x),...,f(x,t+1)=f_{t+1}(x)$



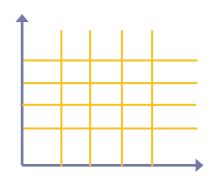
# VSS using Bivariate polynomials - Step 1 (t+1)-out-of-n secret sharing

- ▶ Dealer defines a random bivariate polynomial f(x,y) of degree t, s.t. f(0,0)= secret.
- ▶ Sends to  $P_i$  the share  $f_i(x)=f(x,i)$ . (t-deg poly)
  - ▶ By the claim, any t+1 shares suffice to reveal secret.
- ▶ Sends to  $P_i$  the dual share  $g_i(x)=f(i,x)$ .
  - Will be used for checking shares received from other parties



#### VSS using Bivariate polynomials

- ▶ Claim:  $\forall$  subset J of size t, the shares and dual shares of  $P_i \in J$  do not reveal the secret.
  - $\blacktriangleright$  Assume wlog J=1,2,...,t.
  - $f_1(x),...,f_t(x)$ , each of degree t, enforce t (t+1) constraints of the bivariate polynomial f.
  - $p_1(x),...,g_t(x)$ , each add another constraint.
  - Total # of constraints is  $t(t+1)+t=t^2+2t=(t+1)^2-1$ . None of them defines f(0,0) directly.

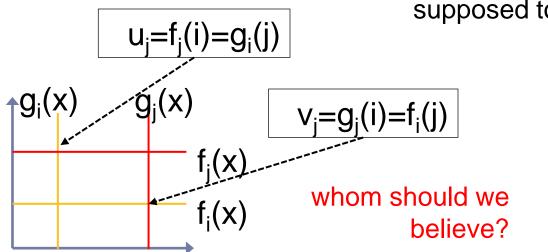


#### VSS using Bivariate polynomials – Step 2

#### ▶ Each party P<sub>i</sub>:

- $\forall$  j, send  $f_i(j)$  and  $g_i(j)$  to  $P_j$ .
- ▶  $\forall$  j, let  $(u_j, v_j)$  the values received from  $P_j$ . If  $u_j \neq g_i(j)$  or  $v_j \neq f_i(j)$ , then broadcast "complaint(i, j,  $f_i(j)$ ,  $g_i(j)$ )".

(the two values P<sub>i</sub> was supposed to receive)



#### VSS using Bivariate polynomials – Step 3

#### ▶ The dealer:

- Upon receiving the message "complaint(i, j,  $f_i(j)$ ,  $g_i(j)$ )" sent by  $P_i$ , check that  $f_i(j)=f(i,j)$  and that  $g_i(j)=f(j,i)$ .
- If the checks fail, broadcast polynomials: reveal(i, $f_i(x)$ , $g_i(x)$ ).
- Namely, if P<sub>i</sub> sent an incorrect complaint, broadcast the shares that it received from dealer.)
- Now, whom should the parties believe, P<sub>i</sub> or the dealer?

#### VSS using Bivariate polynomials – Step 4

#### ▶ Each P<sub>i</sub>

- If  $P_i$  views two messages complaint(k,j,u<sub>1</sub>,v<sub>1</sub>) and complaint(j,k,u<sub>2</sub>,v<sub>2</sub>), and the dealer did not broadcast a corresponding reveal message, go to 3.
- If  $P_i$  views a message reveal( $j, f_j(x), g_j(y)$ ), check if it agrees with  $P_i$ 's shares:  $f_i(j) = g_j(i)$  and  $g_i(j) = f_j(i)$ . If the check succeeds, broadcast "good" (i.e., I agree with the dealer).
- 3. If at least n-t parties broadcasted "good" then use the shares that they have. Otherwise they abort.

## VSS Security proof - Sketch

- Assume dealer is honest
  - An honest  $P_J$  complains only if a corrupt  $P_i$  sends it incorrect values. But since the complaint of  $P_i$  contains good values, the dealer does not reveal  $P_J$ 's share.
  - If a corrupt P<sub>i</sub> complains with incorrect values, dealer sends a reveal message of P<sub>i</sub>'s shares,
    - which passes the test of the n-t honest parties,
    - which then send n-t good messages
    - and therefore output the correct shares which enable to recover the secret.

## VSS Security proof - Sketch

#### Assume dealer is corrupt

- Suppose  $P_i, P_k$  are honest and receive inconsistent shares:  $f_j(k) \neq g_k(j)$ , or  $g_j(k) \neq f_k(j)$ .
- Both parties complain, and therefore dealer must send reveal message or else no honest party broadcasts good.
- The shares are used only if n-t parties output "good". Some might be corrupt, but at least (n-t)-t=t+1 of them are honest.
- Their polynomials agree with those revealed by the dealer.
- These t+l polynomials define a unique bivariate poly, which defines the secret.
- That's all that we need.

## The full protocol

- Inputs are shared using VSS.
  - ▶ Therefore dealer deals consistent shares.
- Addition gates are trivial.
- Multiplication gates:
  - Must ensure that each party multiplies its own shares.
  - Must use a VSS to perform the sharing defined by the protocol.
  - The full description and proof are quite intricate.

#### Overhead

- No public key operations are needed!
- Input sharing step is more complicated than in the semihonest case
  - Length of messages increases by O(n)
  - ▶ But this protocol is run only once, and has O(I) rounds.
- Multiplication gates
  - Requires the use of a VSS
  - Message length increases by O(n)