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Lecture 8: Chosen-ciphertext security, the 
Cramer-Shoup cryptosystem. 

Bleichenbacher’s attack against PKCS#1
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Related papers

– Lecture notes of Moni 
Naorhttp://www.cs.ioc.ee/yik/schools/win2004/naor-slides-
2.5.ppt

– Lecture notes of Jonathan Katz 
http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/lecture
2.pdf

– Daniel Bleichenbacher, Chosen Ciphertext Attacks against 
Protocols Based on RSA Encryption Standard PKCS #1 
http://www.bell-labs.com/user/bleichen/papers/pkcs.ps
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Security against chosen-ciphertext attacks

• We show the public key to the adversary
• Adversary can ask to receive decryptions of messages 

of his choice
• Adversary chooses two messages m0,m1 (possibly 

based on the answers he previously received)
• Adversary is given an encryption E(mb), where b∈R{0,1}
• Adversary can issue further  decryption queries, but not 

E(mb)
• Adversary guesses b

• Adversary succeeds if its probability of guessing b 
correctly is not negligibly close to ½
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The Cramer-Shoup cryptosystem

• Cramer and Shoup suggested (in 1998) an encryption 
scheme which is practical and provably secure against 
chosen ciphertext attacks

• Security is based on the DDH assumption
• The overhead is only a few exponentiations

• The basic idea:
– Add redundancy to the cryptosystem.
– A ciphertext with the right redundancy is “valid”. Otherwise 

it is invalid.
– Decryption is only performed for valid ciphertexts.
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Cramer-Shoup “Lite” – security against 
“preprocessing” chosen ciphertext attacks

• Setup:
– A subgroup G of order q, with generators g1,g2

• Key generation:
– x,y,a,b ←R Zq

– h = (g1)x⋅(g2)y      c = (g1)a⋅(g2)b

– Public key = 〈 g1,g2,h,c 〉
– Private key = 〈 x,y,a,b 〉

• Encryption of m:
– r ←R Zq

– Ciphertext is 〈 g1
r, g2

r, hr⋅m, cr 〉

• Decryption of 〈 u,v,e,w 〉:
– If (w=uavb) then output e/(uxvy), otherwise no output.

Correctness?

Overhead?
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Security proof (against non-adaptive chosen 
ciphertext attacks)

• Assume that A attacks the cryptosystem. We build an 
A’ which breaks the DDH assumption.

• We are given an input to A’ and we generate a setting 
for A to work in. We want  the following to hold:
– If the input to A’ is a DDH tuple, then the setting of A is 

exactly as in the case it is attacking the cryptosystem.
– If the input to A’ is a random tuple, then the setting of A

provides it with an encryption of a random element.
– The queries that A’ makes to the decryption oracle do not 

reveal anything.



7

page 7May 7, 2006 Advanced Topics in Cryptography, Benny Pinkas

Setting for the security proof

A

knows how to 
attack Cramer-

Shoup

A’: attacks the DDH
g1,g2,g3,g4

Public keys

decryption queries

CS challenge

DDH answer

CS answer
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Cramer-Shoup Lite is insecure against chosen-
ciphertext attacks which are based on the 

• The ciphertext is 〈 u,v,e,w 〉 = 〈 g1
r, g2

r, hr⋅m, cr 〉

• The receiver checks that uavb=w, but this check does 
not depend on e=hr⋅ m.

• This enables attacks which are based on the 
homomorphic properties of the scheme.
– The adversary can therefore change the challenge 

ciphertext 〈 g1
r, g2

r, hr⋅mb, cr 〉 to 〈 g1
r, g2

r, hr⋅m⋅ α, cr 〉, send 
it as a decryption query and obtain m⋅α.

– Alternatively, it could generate the ciphertext 〈 g1
rr’, g2

rr’, 
hrr’⋅mb

r’, crr’ 〉, send it as a decryption query and learn mr’.
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The Cramer-Shoup cryptosystem

• Key generation:
– x,y,a,b,a’,b’ ←R Zq
– h = (g1)x⋅(g2)y      c = (g1)a⋅(g2)b     d = (g1)a’⋅(g2)b’

– H is a collision resistant hash function
– Public key = 〈 g1,g2,h,c,d,H 〉
– Private key = 〈 x,y,a,b,a’,b’ 〉

• Encryption of m:
– r ←R Zq
– Ciphertext is 〈 g1

r, g2
r, hr⋅m, (cdα)r 〉,  α = H(g1

r,g2
r,hr⋅m)

• Decryption of 〈 u,v,e,w 〉:
– If (w=ua+αa’⋅vb+αb’), where α = H(u,v,e), then output e/(uxvy), 

otherwise no output.
• Why can’t we remove d, and let the last element be cαr?
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Security proof (against adaptive chosen 
ciphertext attacks)

• Assume that A attacks the cryptosystem. We build an 
A’ which breaks the DDH assumption.

• We are given an input to A’ and we generate a setting 
for A to work in. We want  the following to hold:
– If the input to A’ is a DDH tuple, then the setting of A is 

exactly as in the case it is attacking the cryptosystem.
– If the input to A’ is a random tuple, then the setting of A

provides it with an encryption of a random element.
– The queries that A’ makes to the decryption oracle do not 

reveal anything.
– A’ can make adaptive decryption queries, even after 

seeing the challenge ciphertext.
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Setting for the security proof

A

knows how to 
attack Cramer-

Shoup

A’: attacks the DDH
g1,g2,g3,g4

Public keys

decryption queries

CS challenge

DDH answer
CS answer

decryption queries
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Constructing A’

• Our input is (g1,g2,g3,g4), which is either a DDH tuple (of 
the form g,ga,gb,gab, namely logg1(g3)=logg2(g4) ), or a 
random tuple.
– x,y,a,b,a’,b’ ←R Zq

– h = (g1)x⋅(g2)y      c = (g1)a⋅(g2)b d = (g1)a’⋅(g2)b’

– Public key = 〈 g1,g2,h,c,d,H 〉
– Private key = 〈 x,y,a,b,a’,b’ 〉
– Answer decryption queries of A, and then receive m0,m1.
– Choose s∈R{0,1}. 
– Send to A the ciphertext 〈 g3, g4, g3

xg4
y⋅ms, g3

a+αa’g4
b+αb’ 〉

– Answer further decryption queries of A
– If the response of A is equal to s then output “DDH tuple”, 

otherwise output “random tuple”
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Case 1: The input of A’ is a DDH tuple

• THM: If A’ receives an input which is a DDH tuple, then 
the view of A is the same as when it is interacting with a 
real cryptosystem.

• Corollary: Pr(A’ outputs “DDH” | DDH input) = Pr(A
succeeds when attacking a real cryptosystem)

• Proof:
– The same as in the Cramer-Shoup Lite case.
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Case 2: The input of A’ is a random tuple

• THM: If A’ receives an input which is a random tuple, 
then (except with negligible probability) A has no 
information about the bit s chosen by A’.
Namely, | Pr(A guesses s | random tuple) – ½ | is negligible.

• Corollary:
– | Pr(A’ outputs “DDH” | random tuple input) – ½ | =    | Pr(A

guesses s | random tuple) – ½ |, and is negligible
– | Pr(A’ outputs “DDH” | DDH input) – Pr(A’ outputs “DDH” | 

random tuple input) | 
= |Pr(A succeeds when attacking a real cryptosystem) - ½|
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Proof of Theorem 2

• As before, we prove the theorem even for the case of 
an adversary which can compute discrete logarithms.
– The adversary A therefore knows γ=logg1g2

• The proof shows that any “bad” decryption query 
(〈u,v,e,w 〉 in which logg1u ≠ logg2w), is rejected (except 
with negligible probability).

• Therefore A can only make “good” queries, and exactly 
as in the “Lite” case, we show that A learns nothing 
from these queries.
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Proof of the theorem

• Claim 1: With all but negligible probability, all “bad”
decryption queries (u,v,e,w) s.t. logg1u≠ logg2v, fail.

• Proof:
– A, which can compute discrete logs, knows that

• logg1c = a+b⋅γ

• logg1d = a’+b’⋅γ

• logg1w*=(a+αa’)r+(b+αb’)γr’ . This is revealed from the 
challenge query 〈g3=g1

r, g4=g1
r’,e*=g3

xg4
y⋅ms, w*=g3

a+αa’g4
b+αb’〉

– A cannot submit the query 〈g3,g4,e*,w*〉
– If it submits a query 〈u,v,e,w〉 such that (u,v,e)=(g3,g4,e*) 

but w≠ w*, then the query is always rejected. 
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Proof (contd)

• (u,v,e) must therefore be different from (g3,g4,e*)
• If H(u,v,e)=H(g3,g4,e*), then A breaks the collision 

intractability of H…
• Therefore α’=H(u,v,e) ≠ H(g3,g4,e*)=α.
• The decryption query of A is accepted only if 

logg1w=(a+α’a’)⋅logg1u+(b+α’b’)⋅γ⋅logg2v, but this 
equation is independent of the known equations

• logg1c = a+b⋅γ

• logg1d = a’+b’⋅γ

• logg1w*=(a+αa’)r+(b+αb’)γr’

– (This is true since r≠ r’, logg1u≠ logg2v, and α ≠ α’.)
– Therefore A generates a good query with probability 1/q.
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Proof of the theorem (contd, exactly as in the 
“Lite” case)

• Claim 2: Assuming all “bad” decryption queries are 
rejected, A learns no information about x and y.

• Proof:
– A knows γ=logg1g2. The public key contains h=g1

xg2
y, and A 

therefore learns that logg1h=x+y⋅γ.
– Bad (rejected) queries reveal nothing about (x,y), since the 

rejection is based on the values of (a,b) alone.
– For good queries (u,v,e,w), A learns e/m=g1

rxg2
ry. Namely, 

that logg1(e/m)=xr+yr⋅γ. (Which is a relation it already knows.)
• Claims 1+ 2 → after n queries, with probability 1-n/q it 

holds that the ciphertext 〈 g3, g4, g3
xg4

y⋅ms, g3
ag4

b 〉 has (q-
n) equal probability options for (x,y), and therfore for m.

• QED
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Chosen Ciphertext Attacks against Protocols 
Based on RSA Encryption Standard PKCS #1

• Is the chosen-ciphertext attack scenario reasonable?
– Who is stupid enough to answer decryption queries?

• The following attack does not require decryption of 
chosen ciphertexts, but rather only learning a single bit 
about the encrypted plaintext.

• PKCS #1 protocol
– A protocol of encrypting plaintexts in RSA
– Describes how to pad messages so that they fit in Zn

*

– If a server which uses PKCS #1 receives a ciphertext 
which decrypts to a message that does not conform with 
the protocol, an error message is returned.

– A reply which includes an error message provides a single 
bit of information about the plaintext.
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PKCS #1

• An RSA encryption standard. 
• Let n be the RSA modulus, and k be the byte length of n.
• An encryption of a data block D, of |D| bytes, first 

generates a string x of the following form:
– The most significant byte is 00
– The next byte is 02
– They are followed by a padding string of at least 8 nonzero 

bytes.
– The next byte is 0.
– The rest of the bytes include D. (Therefore |D|≤k-11 bytes, 

and the length of the padding string is k-3-|D|.)
• The string x is encrypted. The ciphertext is xe mod n.



21

page 21May 7, 2006 Advanced Topics in Cryptography, Benny Pinkas

The attack

• The attacker is given c, and wants to find m=cd.
• The attacker picks random numbers s, and asks to 

decrypt c’=c⋅ se mod n. If it does not receive an error 
message it concludes that m⋅s is PKCS compliant.
– Let B=28(k-2)

– Then if m⋅s is PKCS compliant, then
• 2B ≤ m⋅s mod n ≤ 3B-1
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The attack

• Given c, choose random integers s0, until c(s0)e is a 
valid ciphertext. Then,
– c0 = c⋅ (s0)e mod n.
– M0 = { [2B,3B-1] }.   (We know that m0 is in [2B,3B-1].)
– In general, Mi={[aj,bj]}, s.t. ∃ j for which m0∈[aj,bj].

• Then, for i=1,…
– Look for si, such that c0(si)e is PKCS compliant.
– ∃ r such that 2B≤ m0si – r⋅n ≤ 3B-1, and therefore

– If m0∈[aj,bj], then we also get that ajsi-(3B-1)≤ r⋅n ≤ bjsi-2B
– This provides possible values for r, which together with (1) 

define new, smaller, ranges for m0.
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Analysis

• Heuristic arguments show that the number of intervals 
is step i is bounded by

and therefore decreases exponentially.

• The analysis shows that for a a 1024 bit RSA modulus, 
about 220 decryption attempts are needed. (This was 
verified by experiments.)
– Is this reasonable? 
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Applying the attack

• A human user is unlikely to answer to 2^{20} incorrect 
messages

• But a computer will
• Many implementations of SSL V3.0 return an error 

message if RSA is chosen as the encryption function, 
and the encrypted message is not PKCS compliant.
– In fact, the SSL protocol requires the message to comply 

with an additional integrity check. But some 
implementations of the protocol return an answer even if 
the message complies with PKCS and does not pass the 
integrity test.


