Advanced Topics in Cryptography

Lecture 6: El Gamal. Chosen-ciphertext security, the Cramer-Shoup cryptosystem.

Benny Pinkas

based on slides of Moni Naor

To specify security of encryption

- The power of the adversary
- computational
- Probabilistic polynomial time machine (PPTM)
- access to the system
- Can it change the messages?
- What constitutes a failure of the system
- What it means to break the system.
- Reading a message
- Forging a message?

Related papers

- Lecture notes of Moni Naor,
http://www.cs.ioc.ee/yik/schools/win2004/naor-slides2.5.ppt
- Lecture notes of Jonathan Katz,
http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/lecture 2.pdf

El Gamal Encryption

- We will show that El Gamal encryption provides semantic security under the DDH assumption.
- Before doing that, let's discuss the DDH assumption.

Discrete Log Problem

- A finite cyclic group G of order n. A generator g.
- DL problem for G to the base g :
- given $Y \in G$ find $0 \leq a \leq n-1$ such that $Y=g^{a}$

DL Assumption for group G to the base g :

- No efficient algorithm can solve whp the DL problem for
$Y=g^{x}$, with $x \in \in_{R}[0 . . n-1]$
- Very useful group for DL:
$-Z_{P}{ }^{*} . P$ and Q : Large primes, s.t. $Q \mid P-1$. g is an element of order Q in \mathbf{Z}_{P}. Best known algorithms run in time $\sqrt{ } \mathbf{Q}$ or subexponential in $\log P$.
- Randomized reduction
- Given a specific instance generate a random instance: given y generate $\mathrm{Y}^{\prime}=\mathrm{Ygr}$ for $\mathrm{r} \in_{\mathrm{R}}$ [Q]
- Therefore worst case is the same as average case

Decisional Diffie-Hellman Problem (DDH)

For for generator g and $a, b \in[Q]$

Given $\mathrm{g}, \mathrm{Y}=\mathrm{g}^{\mathrm{a}}, \mathrm{X}=\mathrm{g}^{\mathrm{b}}$ and Z decide whether $\mathrm{Z}=\mathrm{g}^{\mathrm{ab}}$ or $\mathrm{Z} \neq$ $g^{a b}$
Equivalent: is $\log _{g} Y=\log _{X} Z$

DDH-Assumption:

- The DDH-Problem is hard in the worst case.

Diffie-Hellman Search Problem

For $\mathrm{a}, \mathrm{b} \in_{\mathrm{R}}[\mathrm{Q}]$
Given $Y=g^{a}$ and $X=g^{b}$ find $Z=g^{a b}$.
Assumption - no algorithm can succeed with high probability

No harder than DL - but not much easier.

Average DDH

For $a, b \in \in_{R}[Q]$ and c which is either

$$
-\mathrm{c}=\mathrm{ab}
$$

$$
-\mathrm{c} \in_{\mathrm{R}}[\mathrm{Q}]
$$

Given $Y=g^{a}$ and $X=g^{b}$ and $Z=g^{c}$ decide whether $Z=g^{a b}$ or $Z \neq g^{a b}$

DDH-Assumption average case:

- The DDH-Problem is hard for above distribution

Worst to Average case reduction

Theorem:The average case and worst case of the DDHAssumption are equivalent (solving the DDH problem is no easier on the average case than in the worst case)
Proof:

- Given g^{a} and g^{b} and g^{c} (and P, Q)
- Sample $r, s_{1}, s_{2} \in_{\mathrm{R}}[\mathrm{Q}]$
- compute
- $g^{a^{\prime}}=\left(g^{a}\right)^{r} g^{s_{1}}$
$-g^{b^{\prime}}=\left(g^{b}\right) g^{s_{2}}$
$-g^{c^{\prime}}=\left(g^{c}\right)^{r}\left(g^{a}\right)^{r_{2}}\left(g^{b}\right)^{s_{1}} g^{s_{1} s_{2}}$

Evidence to Validity of DDH

- Endured extensive research for DH search
- DH-search related to discrete log
- Hard for generic algorithms
- that work in a black-box group
- Computing the most significant bits of $g^{a b}$ is hard
- Random-self-reducibility

Worst to average

If $c=a b+e \bmod Q$ then
$-a^{\prime}=r a+s_{1} \bmod Q$
$-b^{\prime}=b+s_{2} \bmod Q$

- c' = a'b'+ er mod Q
- Always: a' and b' are uniformly distributed.
- If $e=0$, then $c^{\prime}=a^{\prime} b^{\prime}$. Otherwise c^{\prime} is uniform and independent in [Q]

El-Gamal Cryptosystem:

- Private key $a \in_{R}[Q]$
- Public key $Y=g^{a}$ and P, Q
- To encrypt M
- choose $r \epsilon_{R}[Q]$ compute $X=g^{r}$ and Y^{r}
- send <X, $\mathrm{Y}^{\mathrm{r}} \cdot \mathrm{M}>$
- To decrypt <X, W>:
- compute $X^{a}=Y^{r}$ and
- output W / X^{a}

Semantic security of El Gamal encryption

- Semantic security = indistinguishability of encryptions = indistinguishability of an encryption of M from an encryption of a random element
- Suppose that an adversary can
- Choose M
- Receive either an encryption of $X\left(\left\langle g^{r}, Y^{r} \cdot M\right\rangle\right)$ or an encryption of a random element ($\left\langle\mathrm{g}^{r}, \mathrm{Y}^{\top} \cdot \mathrm{R}\right\rangle$), and distinguish between these cases.
- Then we can use the adversary to break the DDH
- We are given g^{a} and g^{b} and g^{c} (where g^{c} is either $g^{a b}$ or random)
- Define the public key as $Y=g^{a}$
- The adversary chooses M
- We send it ($\mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{c}} \cdot \mathrm{M}$)

Security against chosen-ciphertext attacks

- Adversary can ask to receive decryptions of messages of his choice
- Adversary chooses two messages $\mathrm{m}_{0}, \mathrm{~m}_{1}$ (possibly based on the answers he previously received)
- Adversary is given an encryption $E\left(m_{b}\right)$, where $b \in_{R}\{0,1\}$
- Adversary can issue further decryption queries
- Adversary guesses b
- Adversary succeeds if its probability of guessing b correctly is not negligibly close to $1 / 2$

El-Gamal Security

Under the DDH assumption the cryptosystem is semantically secure against chosen plaintext attacks but...

- Scheme is malleable
- To change M to $M^{\prime}=M \cdot C$:
change $\langle\mathbf{X}, \mathrm{W}\rangle$ to $\langle\mathbf{X}, \mathrm{W} \cdot \mathrm{C}\rangle$
- Therefore the scheme is insecure against chosen ciphertext attacks
- Given an encryption of M, change it to an encryption of M^{\prime} and ask to see its decryption.
- Why is this important?

The Cramer-Shoup cryptosystem

- Cramer and Shoup suggested (in 1998) an encryption scheme which is practical and provably secure against chosen ciphertext attacks
- Security is based on the DDH assumption
- The overhead is only a few exponentiations
- The basic idea:
- Add redundancy to the cryptosystem.
- A ciphertext with the right redundancy is "valid". Otherwise it is invalid.
- Decryption is only performed for valid ciphertexts.

Non-adaptive chosen ciphertext security, aka security against lunch-time (or preprocessing) attacks

- Adversary can ask to receive decryptions of messages of his choice
- Adversary chooses two messages $\mathrm{m}_{0}, \mathrm{~m}_{1}$ (possibly based on the answers he previously received)
- Adversary is given an encryption $E\left(m_{b}\right)$, where $b \in_{R}\{0,1\}$

- Adversary can issuo furthor docryption queries

- Adversary guesses b
- Adversary succeeds if its probability of guessing b correctly is not negligibly close to $1 / 2$

Cramer-Shoup "Lite"

- Setup:
- A subgroup G of order q, with generators g_{1}, g_{2}
- Key generation:
$-x, y, a, b \leftarrow_{R} Z_{q}$
$-h=\left(g_{1}\right)^{x} \cdot\left(g_{2}\right)^{y} \quad c=\left(g_{1}\right)^{a \cdot} \cdot\left(g_{2}\right)^{b}$
Correctness?
- Public key $=\left\langle g_{1}, g_{2}, h, c\right\rangle$

Overhead?

- Private key $=\langle x, y, a, b\rangle$
- Encryption of m:

$$
-r \leftarrow_{R} Z_{q}
$$

- Ciphertext is $\left\langle\mathrm{g}_{1}{ }^{\mathrm{r}}, \mathrm{g}_{2}{ }^{\mathrm{r}}, \mathrm{h}^{\mathrm{r}} \cdot \mathrm{m}, \mathrm{c}^{r}\right\rangle$
- Decryption of $\langle\mathrm{u}, \mathrm{v}, \mathrm{e}, \mathrm{w}\rangle$:
- If $\left(w=u^{a} v^{b}\right)$ then output $e /\left(u^{x} v^{y}\right)$, otherwise no output.

Cramer-Shoup "Lite"

- A simplification of the Cramer-Shoup cryptosystem, which is only secure against non-adaptive chosen ciphertext attacks.

Security proof (against non-adaptive chosen ciphertext attacks)

- Assume that A attacks the cryptosystem. We build an A' which breaks the DDH assumption.
- We are given an input to A^{\prime} and we generate a setting for A to work in. We want the following to hold:
- If the input to A^{\prime} is a DDH tuple, then the setting of A is exactly as in the case it is attacking the cryptosystem.
- If the input to A^{\prime} is a random tuple, then the setting of A provides it with an encryption of a random element.
- The queries that A' makes to the decryption oracle do not reveal anything.

Constructing A'

- Our input is $\left(g_{1}, g_{2}, g_{3}, g_{4}\right)$, which is either a DDH tuple (of the form $\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{ab}}$, namely $\log _{\mathrm{g} 1}\left(\mathrm{~g}_{3}\right)=\log _{\mathrm{g} 2}\left(\mathrm{~g}_{4}\right)$), or a random tuple.
$\int^{-x, y, a, b} \leftarrow_{R} Z_{a}$
$-\mathrm{h}=\left(\mathrm{g}_{1}\right)^{\mathrm{x}} \cdot\left(\mathrm{g}_{2}\right)^{\mathrm{y}} \quad \mathrm{c}=\left(\mathrm{g}_{1}\right)^{\mathrm{a} \cdot}\left(\mathrm{g}_{2}\right)^{\mathrm{b}}$
$\left\{\right.$ - Public key $=\left\langle g_{1}, g_{2}, h, c\right\rangle$
- Private key $=\langle x, y, a, b\rangle$
- Answer decryption queries of A, and then receive m_{0}, m_{1}
- Choose $\mathrm{S} \in_{\mathrm{R}}\{0,1\}$.
- Send to A the ciphertext $\left\langle g_{3}, g_{4}, g_{3}{ }^{\mathrm{x}} \mathrm{g}_{4}{ }^{\mathrm{y}} \cdot \mathrm{m}_{\mathrm{s}}, \mathrm{g}_{3}{ }^{\text {a }} \mathrm{g}_{4}{ }^{\text {b }}\right\rangle$
- If the response of A is equal to s then output "DDH tuple", otherwise output "random tuple"

Case 2: The input of A^{\prime} is a random tuple

- THM: If A^{\prime} receives an input which is a random tuple, then (except with negligible probability) A has no information about the bit s chosen by A'.
Namely, $\mid \operatorname{Pr}(\mathrm{A}$ guesses $\mathrm{s} \mid$ random tuple) $-1 / 2 \mid$ is negligible.

- Corollary:

- | $\operatorname{Pr}\left(A^{\prime}\right.$ outputs "DDH" | random tuple input) $-1 / 2|=| \operatorname{Pr}(A$ guesses \mid random tuple) $-1 / 2 \mid$, and is negligible
- | $\operatorname{Pr}\left(A^{\prime}\right.$ outputs "DDH" | DDH input) $-\operatorname{Pr}\left(A^{\prime}\right.$ outputs "DDH" | random tuple input) |
$=\mid \operatorname{Pr}(\mathrm{A}$ succeeds when attacking a real cryptosystem $)-1 / 2 \mid$

Case 1: The input of A^{\prime} is a DDH tuple

- THM: If A' receives an input which is a DDH tuple, then the view of A is the same as when it is interacting with a real cryptosystem
- Corollary: $\operatorname{Pr}\left(A^{\prime}\right.$ outputs "DDH" \mid DDH input $)=\operatorname{Pr}(A$ succeeds when attacking a real cryptosystem)
- Proof:
- The public and secret keys generated by A' are of the right format, and the decryption queries are answered correctly.
- If the input of A^{\prime} is a DDH tuple
- then $\log _{g_{1} 1}\left(g_{3}\right)=\log _{g_{2}}\left(g_{4}\right)=r$
- and then the ciphertext $\left\langle g_{3}, g_{4},\left(g_{3}\right)^{x}\left(g_{4}\right)^{y} \cdot m_{s},\left(g_{3}\right)^{a}\left(g_{4}\right)^{b}\right\rangle$ is of the form $\left\langle\left(g_{1}\right)^{r},\left(\mathrm{~g}_{2}\right)^{r}, \mathrm{~h}^{r} \cdot \mathrm{~m}_{\mathrm{s}}, \mathrm{c}^{r}\right\rangle$, which is the right format.

Proof of the theorem

- We will prove the theorem for the case of a computationally unbounded A
- Therefore A knows $\gamma=\log _{g 1} g_{2}$
- Claim 1: With all but negligible prob, all decryption queries (u,v,e,w) s.t. $\log _{g 1} u \neq \log _{g 2} v$, fail.

- Proof:

- Suppose $u=g_{1}{ }^{r}, v=g_{2}{ }^{r^{\prime}}, r \neq r^{\prime}$.
- $\forall z$, ヨa single pair (a,b), s.t. $w=u^{a} v^{b}$, namely $\log _{91} w=a r+b r^{\prime} \cdot \gamma$.
- Therefore, for A the value $u^{a} v^{b}$ is uniformly distributed, and its guess of w is rejected with probability $1-1 / q$.
- If A performs n queries, they are all rejected with prob 1-n/q.

$$
\begin{aligned}
& \text { Proof of the theorem (contd) } \\
& \text { - Claim 2: Assuming all "bad" decryption queries are } \\
& \text { rejected, A learns no information about } x \text { and } y \text {. } \\
& \text { - Proof: } \\
& \text { - A knows } \gamma=\log _{g_{1}} \mathrm{~g}_{2} \text {. The public key contains } \mathrm{h}=\mathrm{g}_{1}{ }^{\mathrm{x}} \mathrm{~g}_{2}{ }^{\mathrm{y}} \text {, and } \mathrm{A} \\
& \text { therefore learns that } \log _{\mathrm{g} 1} \mathrm{~h}=\mathrm{x}+\mathrm{y} \cdot \gamma \text {. } \\
& \text { - Bad (rejected) queries reveal nothing about (} x, y \text {), since the } \\
& \text { rejection is based on the values of (} \mathrm{a}, \mathrm{~b} \text {) alone. } \\
& \text { - For good queries (u,v,e,w), A learns e/m= } g_{1}{ }^{r \times} g_{2}{ }^{r y} \text {. Namely, } \\
& \text { that } \log _{\mathrm{g} 1}(\mathrm{e} / \mathrm{m})=\mathrm{xr}+\mathrm{yr} \cdot \gamma \cdot \text { (Which is a relation it already knows.) } \\
& \text { - Claims } 1+2 \rightarrow \text { after } n \text { queries, with probability } 1-\mathrm{n} / \mathrm{q} \text { it } \\
& \text { holds that the ciphertext }\left\langle g_{3}, g_{4}, g_{3}{ }^{x} g_{4}{ }^{y} \cdot m_{s}, g_{3}{ }^{a} g_{4}{ }^{b}\right\rangle \text { has (} q \text { - } \\
& \mathrm{n} \text {) equal probability options for (} \mathrm{x}, \mathrm{y} \text {), and therfore for } \mathrm{m} \text {. } \\
& \text { - QED }
\end{aligned}
$$

