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Advanced Topics in Cryptography

Lecture 6: Semantic security, chosen-
ciphertext security. 

Benny Pinkas
Based on slides of Moni Naor
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No class on May 28.
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Related papers

• Semantic security

– Lecture notes of Moni Naor, 
http://www.cs.ioc.ee/yik/schools/win2004/naor-slides-
2.5.ppt

– Lecture notes of Jonathan Katz, 
http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/lecture
2.pdf
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To specify security of encryption

• The power of the adversary
– computational 

• Probabilistic polynomial time machine (PPTM)

– access to the system
• Can it change the messages?

• What constitutes a failure of the system 
– What it means to break the system.

• Reading a message

• Forging a message?
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What is a public-key encryption scheme

• Allows Alice to publish a public key KP while keeping hidden a 
secret key KS
Key generation : a method G:{0,1}*a {0,1}* x {0,1}* that outputs KP
(Public) and KS (secret)

• ``Anyone” who is given KP and m can encrypt m
Encryption : a method 

E:{0,1}* x {0,1}* x {0,1}* a {0,1}*

– that takes a public key  KP, a message (plaintext) m and random coins 
and outputs an encrypted message ciphertext

• Given a ciphertext and the secret key it possible to decrypt it
Decryption : a method 

D:{0,1}* x {0,1}* x {0,1}* a {0,1}*

that takes a secret key KS, a public key  KP and a  ciphertext c and outputs 
a plaintext m. In general 

D(KS, KP, E(KP, m, r)) = m
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Computational Security of Encryption
Indistinguishability of Encryptions

Indistinguishability of encrypted strings:
– Adversary A chooses X0 , X1 ∈{0,1}n 

– receives encryption of  Xb for b∈R{0,1}
– has to decide whether b = 0 or b = 1.

For every pptm A, choosing a pair  X0 , X1 ∈{0,1}n 

 Pr[A= ‘1’ | b = 1 ] - Pr[A= ‘1’ | b = 0 ]  is negligible.
– Probability is over the choice of keys, randomization in the 

encryption and A‘s coins.

• In other words: 
the encryptions of X0 , X1 are indistinguishable

• Note that this holds for any X0 , X1 that A might choose
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Computational Security of Encryption
Semantic Security

• Whatever Adversary A can compute on encrypted string  X∈{0,1}n, so 
can A’ that does not see the encryption of X yet simulates A ’s 
knowledge with respect to X

• A selects:
– Distribution Dn on {0,1}n  

– Relation R(X,Y) - computable in probabilistic polynomial time
• For every pptm A choosing a (poly time samplable) distribution Dn on
{0,1}n  there is an pptm A’ so that for all pptm relation R, for X∈R Dn

 Pr[R(X,A(E(X)) ] - Pr[ R(X,A’ (⋅)) ]  is negligible(*)

• In other words: The outputs of A and A’ are indistinguishable even for a 
test that is aware of X

Note: the presentation of semantic security is non-standard (but 
equivalent to it)

(*) ε(n) is negligible if for ∀ polynomial p(n), ∃N, s.t. ∀n>N ε(n) < p(n)
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Equivalence of Semantic Security and 
Indistinguishability of Encryptions

• Would like to argue their equivalence
• Must define the attack

– Otherwise cannot fully talk about an attack
• Chosen plaintext attacks

– Adversary can obtain the encryption of any message it 
wishes

– In an adaptive manner
• Certainly feasible in a public-key setting

• More severe attacks
– Chosen ciphertext
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Security of public key cryptosystems:
exact timing 

• Adversary A gets to public key KP

• Then A can mount an adaptive attack
– No  need for further interaction since can do all the 

encryption on its own
• Then A chooses

– In semantic security the distribution Dn and the relation R
– In indistinguishability of encryptions the pair X0 , X1 ∈{0,1}n 

• Then A is given the test
– In semantic security E(KP, X ,r) for X∈R Dn and r∈R {0,1}m

– In indistinguishability of encryptions the E(KP, Xb ,r) for b∈R
{0,1} and  r∈R {0,1}m
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When is each definition useful

• Semantic security seems to convey that the 
message is protected
– Not the strongest possible definition

• Easier to prove indistinguishability of 
encryptions
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The Equivalence Theorem

• For adaptive chosen plaintext attack in a public 
key setting:
a cryptosystem  is semantically secure if and only 
if it has the indistinguishability of encryptions 
property
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Equivalence Proof

If a scheme has the indistinguishability of encrypt ions property, then it is 
semantically secure :

• Suppose not, and A chooses,  some distribution Dn and some relation R
• Choose X0 , X1 ∈R Dn and run  A twice on

– C0 = E(KP, X0 ,r0) call the output  Y0=A(E(KP, X0 ,r0))
– C1 = E(KP, X1 ,r1) call the output  Y1=A(E(KP, X1 ,r1))

• For   X0 , X1 ∈R Dn let 
– α0 = Prob[R(X0, Y0)] 
– α1 = Prob[R(X0, Y1)]

• If |α0 -α1 | is non negligible, then can distinguish between an encryption of X0 and
X1 
– This contradicts the indistinguishability property, and therefore the assumption 

• If |α0 -α1 | is negligible, then can run A’ with no access to encryption
– We want to compete with R(X,A(E(X)).
– sample X’∈R Dn and C’ = E(KP, X’, r) 
– Run A on C’ and output  Y’.
– | Pr(R(X,A(E(X))) – Pr(R(X,Y’)) | = |α0 -α1 | and is  negligible.

Here we Use the power 

to generate encryptions
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Equivalence Proof…

If a scheme is semantically secure, then it has the  
indistinguishability of encryptions property :

• Suppose not, and A chooses
– A pair X0 , X1∈{0,1}n 

– For which it can distinguish with advantage ε
• Choose 

– distribution Dn = {X0 , X1 }
– Relation R which is “equality with X”

• For any A’ that does not get C = E(KP, X ,r) and outputs Y’
Prob[R(X, Y’)]= ½

• By simulating A and outputting Y= Xb for guess b∈{0,1}
Prob[R(X, Y)] ≥ ½ + ε
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Concatenations

• If (G,E,D) is a semantically secure cryptosystem, then 
an Adversary A which
– Chooses X0, X1∈{0,1}n 

– Receives k independent encryptions of  Xb for b∈R{0,1}
– has to decide whether b = 0 or b = 1.

• Cannot have a non-negligible advantage. Namely, 
| Pr(A(E(X0),…,E(X0))=1) - Pr(A(E(X1),…,E(X1))=1) | is negligible.

• Proof: hybrid argument
– Let Hj be a hybrid where A receives j encryptions of X0

followed by  k-j encryptions of random X1

– Suppose | Pr(A(Hk)=1) - Pr(A(H0)=1) | is not negligible.
– Then ∃j s.t. | Pr(A(Hj+1)=1) - Pr(A(Hj)=1) | is not negligible.
– Can use it to distinguish between E(X0) and E(X1)
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From single bit to many bits

• If there is an encryption scheme that can hide E(KP, 0 ,r) 
from E(KP, 1 ,r), then we can construct a full blown (for any 
length messages) semantically secure cryptosystem by 
concatenation.

• The construction:
– Each bit in the message m∈{0,1}k  is encrypted separately

• Proof: a hybrid argument
– Using definition of indistinguishability of encryption
– Suppose adversary chooses X0 , X1∈{0,1}k 

– Let:
• D0 be the distribution on encryptions of X0

• Dk be the distribution on encryptions of X1

• Di be the distribution where the first i bits are from X0 and the last k-i 
bits are from X1 
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A construction that fails

• Trapdoor one-way permutation fp: {0,1}n → {0,1}n

– KP (Public) and KS (secret) are the keys of the trapdoor 
permutation.

– Computing fp is easy given Kp. 
– Computing fp-1 is easy given Ks. Hard otherwise.

• Why not encrypt m by sending fp(m)?
– fp(m) might reveal partial information about m.
– For example, if fp(m) is trapdoor one-way, so is gp: {0,1}2n

→ {0,1}2n, defined as gp(x,y)=(x,fp(y)).
– gp(m) is not semantically secure, since it reveals half the 

bits of m.
• In fact, any deterministic encryption scheme cannot 

provide semantic security
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Construction: from trapdoor one-way permutation

• Key generation:  KP (Public) and KS (secret) are the 
keys of a trapdoor permutation

• Encryption: to encrypt a message m∈{0,1}k  

– select x∈R {0,1}n and r∈R {0,1}n

– Compute g(x) =  [x⋅ r, fP(x) ⋅ r, fP(2)(x) ⋅ r, … fP(k-1)(x) ⋅ r]
– Send m xored with g(x), and in addition y=fP(k)(x) and r

(g(x) ⊕ m, fP(k)(x), r)
• Decryption: given (c, y, r)

– extract x = fP(-k)(y) using KS

– compute g(x) using r
– extract m by xoring c with g(x)
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Security of construction

Claim : given y=fP(k)(x), the value of g(x) is 
indistinguishable from random

Proof:
– it is sufficient to show that given y=fP(x), r, for a randomly 

chosen r, the value of x⋅r is indistinguishable from random 
(this is the Goldreich-Levin hardcore predicate)

– If the adversary could have reconstructed x⋅r exactly, it 
could have revealed x (given sufficient samples)

– We can only assume that for many x’s, the adversary can 
use y to guess x⋅r with probability ½+ε

– The GL proof shows a reconstruction algorithm, that given 
such an adversary constructs a short list of candidates for 
x. It then checks which of these values satisfies fp(x)=y. 
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Example

• Blum-Goldwasser cryptosystem
– Based on the Blum, Blum, Shub pseudo-random 

generator
– The permutation defined by N= P⋅Q, where P,Q = 3 mod 4
– The trapdoor is P,Q
– For x ∈ ZN

*, x is a quadratic residue
fN(x)=x2 mod N
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One-way encryption is sufficient for semantic security 
against chosen plaintext attack

Call an encryption scheme one-way if given c=E(KP, m, s) 
for random m and s it is hard to find m

– This is the weakest form of security one can expect from a ``self-
respecting” cryptosystem

• Can use it to construct a single-bit indistinguishable 
scheme:

• To encrypt a bit b∈{0,1}: 
– choose random x, s  and r 
– Send (c,r,b’) where 

• c=E(KP, x, s)

• b’= x⋅ r ⊕ b

Security : from the Goldreich-Levin reconstruction algorithm


