Advanced Topics in Cryptography

Lecture 6: Semantic security, chosenciphertext security.

Benny Pinkas

Based on slides of Moni Naor

Related papers

- Semantic security
- Lecture notes of Moni Naor, http://www.cs.ioc.ee/yik/schools/win2004/naor-slides2.5.ppt
- Lecture notes of Jonathan Katz,
http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/lecture 2.pdf

No class on May 28.

To specify security of encryption

- The power of the adversary
- computational
- Probabilistic polynomial time machine (PPTM)
- access to the system
- Can it change the messages?
- What constitutes a failure of the system
- What it means to break the system.
- Reading a message
- Forging a message?

What is a public-key encryption scheme

- Allows Alice to publish a public key K_{p} while keeping hidden a secret key K_{S}
Key generation: a method $G:\{0,1\}^{*} \mapsto\{0,1\}^{*} \times\{0,1\}^{*}$ that outputs K_{P} (Public) and K_{S} (secret)
"Anyone" who is given K_{p} and m can encrypt m Encryption: a method
$\mathrm{E}:\{0,1\}^{*} \times\{0,1\}^{*} \times\{0,1\}^{*} \mapsto\{0,1\}$
- that takes a public key K_{p}, a message (plaintext) m and random coins that takes a public key K_{p}, a message (plaintex)
and outputs an encrypted message ciphertext
- Given a ciphertext and the secret key it possible to decrypt it Decryption: a method
that takes a secret key K_{S}, a public key K_{p} and a ciphertext c and outputs a plaintext m . In general
$D\left(K_{S}, K_{p}, E\left(K_{p}, m, r\right)\right)=m$

Computational Security of Encryption Semantic Security

- Whatever Adversary A can compute on encrypted string $X \in\{0,1\}^{\text {n }}$, so can \mathbf{A}^{\prime} that does not see the encryption of X yet simulates \mathbf{A} 's nowledge with respect to X
- A selects:
- Distribution D_{n} on $\{0,1\}^{n}$
- Relation $R(X, Y)$ - computable in probabilistic polynomial time

For every pptm \mathbf{A} choosing a (poly time samplable) distribution D_{n} on $\{0,1\}^{n}$ there is an pptm A^{\prime} so that for all pptm relation R, for $X \in \in_{R} D_{n}$
$\operatorname{Pr}\left[R(X, \mathbf{A}(E(X))]-\operatorname{Pr}\left[R\left(X, \mathbf{A}^{\prime}(\cdot)\right)\right]\right.$ is negligible($\left.{ }^{*}\right)$

- In other words: The outputs of \mathbf{A} and \mathbf{A}^{\prime} are indistinguishable even for a test that is aware of X

Note: the presentation of semantic security is non-standard (but equivalent to it)
$\left(^{*}\right) \varepsilon(n)$ is negligible if for \forall polynomial $p(n), \exists N$, s.t. $\forall n>N \varepsilon(n)<p(n)$

Computational Security of Encryption
Indistinguishability of Encryptions

Indistinguishability of encrypted strings:

- Adversary A chooses $X_{0}, X_{1} \in\{0,1\}^{n}$
- receives encryption of X_{b} for $b \in_{R}\{0,1\}$
- has to decide whether $b=0$ or $b=1$.

For every pptm A, choosing a pair $X_{0}, X_{1} \in\{0,1\}^{n}$
$|\operatorname{Pr}[\mathbf{A}=' 1 ' \mid \mathrm{b}=1]-\operatorname{Pr}[\mathbf{A}=' 1 ' \mid \mathrm{b}=0]|$ is negligible.

- Probability is over the choice of keys, randomization in the encryption and A's coins.
- In other words:
the encryptions of X_{0}, X_{1} are indistinguishable
- Note that this holds for any X_{0}, X_{1} that A might choose

Equivalence of Semantic Security and Indistinguishability of Encryptions

- Would like to argue their equivalence
- Must define the attack
- Otherwise cannot fully talk about an attack
- Chosen plaintext attacks
- Adversary can obtain the encryption of any message it wishes
- In an adaptive manner
- Certainly feasible in a public-key setting
- More severe attacks
- Chosen ciphertext

Security of public key cryptosystems:

 exact timing- Adversary A gets to public key K_{P}
- Then A can mount an adaptive attack
- No need for further interaction since can do all the encryption on its own
- Then A chooses
- In semantic security the distribution D_{n} and the relation R
- In indistinguishability of encryptions the pair $X_{0}, X_{1} \in\{0,1\}^{n}$
- Then \mathbf{A} is given the test
- In semantic security $E\left(K_{p}, X, r\right)$ for $X \in_{R} D_{n}$ and $r \in_{R}\{0,1\}^{m}$
- In indistinguishability of encryptions the $E\left(K_{p}, X_{b}, r\right)$ for $b \in_{R}$ $\{0,1\}$ and $r \in_{R}\{0,1\}^{m}$

The Equivalence Theorem

- For adaptive chosen plaintext attack in a public key setting:
a cryptosystem is semantically secure if and only if it has the indistinguishability of encryptions property

When is each definition useful

- Semantic security seems to convey that the message is protected
- Not the strongest possible definition
- Easier to prove indistinguishability of encryptions

Equivalence Proof

If a scheme has the indistinguishability of encryptions property, then it is semantically secure

- Suppose not, and \mathbf{A} chooses, some distribution D_{n} and some relation \mathbf{R}
- Choose $X_{0}, X_{1} \in_{R} D_{n}$ and run A twice on
- $C_{0}=E\left(K_{P}, X_{0}, r_{0}\right)$ call the output $Y_{0}=A\left(E\left(K_{p}, X_{0}, r_{0}\right)\right)$
$-\mathrm{C}_{1}=\mathrm{E}\left(\mathrm{K}_{\mathrm{p}}, \mathrm{X}_{1}, r_{1}\right)$ call the output $\mathrm{Y}_{1}=\mathrm{A}\left(\mathrm{E}\left(\mathrm{K}_{\mathrm{p}}, \mathrm{X}_{1}, \mathrm{r}_{1}\right)\right)$
- For $X_{0}, X_{1} \in_{R} D_{n}$ let
$\begin{array}{ll}- & \alpha_{0}=\operatorname{Prob}\left[\mathbf{R}\left(X_{0}, Y_{0}\right)\right] \\ - & \alpha_{1}=\operatorname{Prob}\left[\mathbf{R}\left(X_{0}, Y_{1}\right)\right]\end{array}$
Here we Use the power $\alpha_{1}=\operatorname{Prob}\left[\mathbf{R}\left(\mathrm{X}_{0}, Y_{1}\right)\right]$ to generate encryptions
- If $\left|\alpha_{0}-\alpha_{1}\right|$ is non negligible, then can distinguish between an encryption of X_{0} and
${ }^{X_{1}}$ This contradicts the indistinguishability property, and therefore the assumption
- If $\left|\alpha_{0}-\alpha_{1}\right|$ is negligible, then can run \mathbf{A}^{\prime} with no access to encryption - We want to compete with $\mathrm{R}(\mathrm{X}, \mathrm{A}(\mathrm{E}(\mathrm{X}))$.
sample $X^{\prime} \in_{R} D_{n}$ and $C^{\prime}=E\left(K_{P}, X^{\prime}, r\right)$.
sample $X \in_{R} D_{n}$ and $C^{\prime}=E$
Run A on C^{\prime} and output Y^{\prime}.
- $\mid \operatorname{Pr}\left(\mathrm{R}(\mathrm{X}, \mathrm{A}(\mathrm{E}(\mathrm{X})))-\operatorname{Pr}\left(\mathrm{R}\left(\mathrm{X}, \mathrm{Y}^{\prime}\right)\right)\left|=\left|\alpha_{0}-\alpha_{1}\right|\right.\right.$ and is negligible.

Equivalence Proof...

If a scheme is semantically secure, then it has the
 \section*{indistinguishability of encryptions property:}

Suppose not, and \mathbf{A} chooses

- A pair $X_{0}, X_{1} \in\{0,1\}^{n}$
- For which it can distinguish with advantage ε

Choose

- distribution $D_{n}=\left\{X_{0}, X_{1}\right\}$
- Relation \mathbf{R} which is "equality with X "
- For any \mathbf{A}^{\prime} that does not get $\mathrm{C}=\mathrm{E}\left(\mathrm{K}_{\mathrm{P}}, \mathrm{X}, \mathrm{r}\right)$ and outputs Y^{\prime} $\operatorname{Prob}\left[\mathbf{R}\left(X, Y^{\prime}\right)\right]=1 / 2$
- By simulating A and outputting $Y=X_{b}$ for guess $b \in\{0,1\}$

$$
\operatorname{Prob}[\mathrm{R}(\mathrm{X}, \mathrm{Y})] \geq 1 / 2+\varepsilon
$$

From single bit to many bits

- If there is an encryption scheme that can hide $E\left(K_{p}, 0, r\right)$ from $E\left(K_{p}, 1, r\right)$, then we can construct a full blown (for any length messages) semantically secure cryptosystem by concatenation.
- The construction:
- Each bit in the message $m \in\{0,1\}^{k}$ is encrypted separately
- Proof: a hybrid argument
- Using definition of indistinguishability of encryption
- Suppose adversary chooses $X_{0}, X_{1} \in\{0,1\}^{k}$ سTسT
- Let:
- D_{0} be the distribution on encryptions of X_{0} هسهس
- D_{k} be the distribution on encryptions of X_{1}
- D_{i} be the distribution where the first i bits are from X_{0} and the last k - i bits are from X_{1}

Concatenations

- If (G, E, D) is a semantically secure cryptosystem, then an Adversary \mathbf{A} which
- Chooses $X_{0}, X_{1} \in\{0,1\}^{n}$
- Receives k independent encryptions of X_{b} for $b \in_{R}\{0,1\}$
- has to decide whether $b=0$ or $b=1$.
- Cannot have a non-negligible advantage. Namely, $\left|\operatorname{Pr}\left(A\left(E\left(X_{0}\right), \ldots, E\left(X_{0}\right)\right)=1\right)-\operatorname{Pr}\left(A\left(E\left(X_{1}\right), \ldots, E\left(X_{1}\right)\right)=1\right)\right|$ is negligible.
- Proof: hybrid argument
- Let H_{j} be a hybrid where A receives j encryptions of X_{0} followed by k-j encryptions of random X_{1}
- Suppose $\left|\operatorname{Pr}\left(A\left(H_{k}\right)=1\right)-\operatorname{Pr}\left(A\left(H_{0}\right)=1\right)\right|$ is not negligible.
- Then $\exists j$ s.t. $\left|\operatorname{Pr}\left(A\left(H_{j+1}\right)=1\right)-\operatorname{Pr}\left(A\left(H_{j}\right)=1\right)\right|$ is not negligible.
- Can use it to distinguish between $E\left(X_{0}\right)$ and $E\left(X_{1}\right)$

A construction that fails

- Trapdoor one-way permutation $f_{p}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ - K_{P} (Public) and K_{S} (secret) are the keys of the trapdoor permutation.
- Computing f_{p} is easy given K_{p}.
- Computing $f_{p}{ }^{-1}$ is easy given K_{s}. Hard otherwise.
- Why not encrypt m by sending $f_{p}(m)$?
- $f_{p}(m)$ might reveal partial information about m.
- For example, if $f_{p}(m)$ is trapdoor one-way, so is $g_{p}:\{0,1\}^{2 n}$ $\rightarrow\{0,1\}^{2 n}$, defined as $g_{p}(x, y)=\left(x, f_{p}(y)\right)$.
$-g_{p}(m)$ is not semantically secure, since it reveals half the bits of m.
- In fact, any deterministic encryption scheme cannot provide semantic security

Construction: from trapdoor one-way permutation

- Key generation: K_{P} (Public) and K_{S} (secret) are the keys of a trapdoor permutation
- Encryption: to encrypt a message $m \in\{0,1\}^{\mathrm{k}}$
- select $x \in_{R}\{0,1\}^{n}$ and $r \in_{R}\{0,1\}^{n}$
- Compute $\mathrm{g}(\mathrm{x})=\left[\mathrm{x} \cdot \mathrm{r}, \mathrm{f}_{\mathrm{P}}(\mathrm{x}) \cdot \mathrm{r}, \mathrm{f}_{\mathrm{P}}{ }^{(2)}(\mathrm{x}) \cdot \mathrm{r}, \ldots \mathrm{f}_{\mathrm{P}}^{(\mathrm{k}-1)}(\mathrm{x}) \cdot \mathrm{r}\right]$
- Send m xored with $g(x)$, and in addition $y=f_{p}(k)(x)$ and r

$$
\left(\mathrm{g}(\mathrm{x}) \oplus \mathrm{m}, \mathrm{f}_{\mathrm{p}}^{(\mathrm{k})}(\mathrm{x}), \mathrm{r}\right)
$$

- Decryption: given (c, y, r)
- extract $x=f_{P}^{(-k)}(y)$ using K_{S}
- compute $g(x)$ using r
- extract m by xoring c with $g(x)$

Example

- Blum-Goldwasser cryptosystem
- Based on the Blum, Blum, Shub pseudo-random generator
- The permutation defined by $N=P \cdot Q$, where $P, Q=3 \bmod 4$
- The trapdoor is P,Q
- For $x \in Z_{N}{ }^{*}, x$ is a quadratic residue
$f_{N}(x)=x^{2} \bmod N$

Security of construction

Claim: given $y=f_{p}(k)(x)$, the value of $g(x)$ is indistinguishable from random

Proof:

- it is sufficient to show that given $\mathrm{y}=\mathrm{f}_{\mathrm{p}}(\mathrm{x})$, r , for a randomly chosen r, the value of $x \cdot r$ is indistinguishable from random (this is the Goldreich-Levin hardcore predicate)
- If the adversary could have reconstructed $x \cdot r$ exactly, it could have revealed x (given sufficient samples)
- We can only assume that for many x's, the adversary can use y to guess $x \cdot r$ with probability $1 / 2+\varepsilon$
- The GL proof shows a reconstruction algorithm, that given such an adversary constructs a short list of candidates for x. It then checks which of these values satisfies $f_{p}(x)=y$.

One-way encryption is sufficient for semantic security

 against chosen plaintext attackCall an encryption scheme one-way if given $\mathrm{c}=\mathrm{E}\left(\mathrm{K}_{\mathrm{p}}, \mathrm{m}, \mathrm{s}\right)$ for random m and s it is hard to find m

- This is the weakest form of security one can expect from a "selfrespecting" cryptosystem
- Can use it to construct a single-bit indistinguishable scheme:
- To encrypt a bit $b \in\{0,1\}$:
- choose random x, s and r
- Send (c,r,b') where
- $c=E\left(K_{p}, x, s\right)$
- $b^{\prime}=x \cdot r \oplus b$

Security: from the Goldreich-Levin reconstruction algorithm

