Advanced Topics in Cryptography

Lecture 5: Homomorphic encryption

Benny Pinkas

Homomorphic encryption

- Public key encryption
- Given $E(x)$ it is possible to compute, without knowledge of the secret key, $\mathrm{E}(\mathrm{c} \cdot \mathrm{x})$, for every c .
- Given $E(x)$ and $E(y)$, it is possible to compute $E(x+y)$
- Actually, we can define it for any group operation ${ }^{\circ}$
- Namely, Given $E(x)$ and $E(y)$, it is easy to compute $E\left(x^{\circ} y\right)$
- Applications
- Voting
- Many cryptographic protocols, e.g. keyword search, oblivious transfer...

Related papers

- Paillier's cryptosystem

- Pascal Paillier, Public-Key Cryptosystems Based on Composite Degree Residuosity Classes, Eurocrypt '99, pp. 223-238.
- Pascal Paillier, Composite-residuosity based cryptography: An overview, Cryptobytes, 5(1):20-26, Winter/Spring 2002.

Homomorphic encryption

- "Standard" public key encryption schemes support Homomorphic operations with relation to multiplication - RSA
- Public key: N, e. Private key: d.
- $E(m)=m^{e} \bmod N$
- $E\left(m_{1}\right) E\left(m_{2}\right)=E\left(m_{1} \cdot m_{2}\right)$
- El Gamal
- Public key : p (or a similar group), $\mathrm{y}=\mathrm{g}^{\mathrm{x}}$. Private key: x .
- $E(m)=\left(g^{r}, y^{r} m\right)$
- $E\left(m_{1}\right) \cdot E\left(m_{2}\right)=E\left(m_{1} \cdot m_{2}\right)$

Modified EI Gamal

- $E(m)=\left(g^{r}, y^{r} g^{m}\right)$
- $E\left(m_{1}\right) \cdot E\left(m_{2}\right)=\left(g^{r}, y^{r} g^{m_{1}}+m_{2}\right)=E\left(m_{1}+m_{2}\right)$
- Decryption reveals $g m_{1}+m_{2}$
- Computing $m_{1}+m_{2}$ is only possible if discrete log is easy. For example, if $m_{1}+m_{2}$ is relatively small.

Paillier's cryptosystem

- Based on composite residuocity classes
- A very useful building block for cryptographic protocols
- Mathematical background
- $n=p \cdot q . \quad p, q$ are large primes.
$-\phi=\phi(n)=(p-1)(q-1)$
- $\lambda=\lambda(n)=\operatorname{lcm}(p-1, q-1) \quad$ Carmichael number
- We work in the group $Z^{*}{ }^{2}$, which has $\phi\left(n^{2}\right)=n \phi(n)$ elements
- For any $w \in Z^{*}{ }^{2}$,
- $w^{\lambda}=1 \bmod n$
- $w^{n \lambda}=1 \bmod n^{2}$

Types of public key cryptosystems

- Mostly based on number theory assumptions.
- Can be categorized in one of three main families:
- Based on root extraction over finite Abelian groups of secret order
- Root extraction is easy when the group order is known - RSA, Rabin.
- Based on exponentiation over finite cyclic groups
- Depend on discrete log and Diffie-Hellman assumptions
- The trapdoor is knowledge of the discrete log of a public group element
- El Gamal
- Based on residuocity classes
- Godwasser-Micali, Paillier.

$\mathrm{N}^{\text {th }}$ residues

- An integer z is an $n^{\text {th }}$ residue modulo n^{2} if there exists an integer y such that $z=y^{n} \bmod n^{2}$.
- The set of $\mathrm{n}^{\text {th }}$ residues is a multiplicative subgroup of order $\phi(\mathrm{n})$.
- The number roots of degree n of 1 is $n: 1, n+1,2 n+1, \ldots$
- Each $n^{\text {th }}$ residue has exactly n roots of degree n.
- Decisional Composite Residuocity Assumption:
- There is no polynomial time algorithm which can decide for $n=p q$ whether a number is an $n^{\text {th }}$ residue or not in $Z_{n}{ }^{2 *}$.
- Homework:
- Show that this problem is random self reducible.
- Show that it easy to solve it given a factoring of n.

Composite residuocity classes

- Let $g \in Z^{*}{ }_{n}{ }^{2}$ s.t. the order of g is a multiple of n. (For example, $g=n+1$).
- Then the following mapping is one-to-one and onto:
$-Z_{n} \times Z_{n}^{*} \rightarrow Z_{n^{2}}^{*}$
$-(x, y) \rightarrow g^{x} y^{n} \bmod n^{2}$
- Namely, for every $w \in Z^{*} n^{2}$ there are unique (x, y) such that $\mathrm{w}=g^{x} y^{n} \bmod n^{2}$.
- This $x \in[1, n]$ is called the (unique) residuocity class of w with respect to g , and is denoted by $[\mathrm{w}]_{\mathrm{g}}$.
- All w values with the same x are in the same residuocity class.
- $[w]_{g}=0$ iff w is an $n^{\text {th }}$ residue.
$-\left[w_{1} \cdot w_{2}\right]_{g}=\left[w_{1}\right]_{g}+\left[w_{2}\right]_{g} \bmod n$

The Paillier cryptosystem

- Initialization:
- $n=p \cdot q, g \in Z^{*}{ }^{2}$. n divides the order of g.
- Public key: n , g.
- Private key: $\lambda=\operatorname{lcm}(p-1, q-1)$.
- Encryption:
- Plaintext: $m \in Z_{n}$.
- Select a random $r \in Z^{*}{ }^{2}$.
- Ciphertext: $c=g^{m} \cdot r^{m} \bmod n^{2}$.
- Decryption:
$-\mathrm{m}=\mathrm{L}\left(\mathrm{c}^{\lambda} \bmod \mathrm{n}^{2}\right) / \mathrm{L}\left(\mathrm{g}^{\lambda} \bmod \mathrm{n}^{2}\right)$

Computing composite residuocity classes

- Let $S_{n}=\left\{u \mid u<n^{2}, u=1 \bmod n\right\}$
- Namely, u = c•n +1.
- For $u \in S_{n}$, the following function is well defined
$-L(u)=(u-1) / n$
- It is easy to compute discrete logs in $Z_{n}^{*}{ }_{n}$ for elements in S_{n} :
- For $u \in S_{n}, L\left(u^{r}\right) / L(u)=r=\left[u^{r}\right]_{u}$
- Namely, $\mathrm{L}(\mathrm{w}) / \mathrm{L}(\mathrm{u})$ is the discrete log of w to the base u, or the residuocity class of w with respect to $u,[w]_{u}$.
- True since ($1+\mathrm{c} \cdot \mathrm{n})^{\mathrm{r}}=1+\mathrm{r} \cdot \mathrm{c} \cdot \mathrm{n}+\ldots$

Correctness

- Ciphertext: $c=g^{m} \cdot r^{m} \bmod n^{2}$.
- Decryption: $m=L\left(c^{\lambda} \bmod n^{2}\right) / L\left(g^{\lambda} \bmod n^{2}\right)$
- Explanation:

$$
\begin{aligned}
& -c^{\lambda}=\left(g^{m} \cdot m^{n}\right)^{\lambda}=g^{m \lambda} r^{m \lambda}=g^{m \lambda} \bmod \mathrm{n}^{2} \\
& \quad=1 \bmod \mathrm{n} \quad=1 \mathrm{modn}^{2} \\
& -c^{\lambda}=g^{\lambda}=1 \bmod \mathrm{n} \\
& - \text { Therefore, } \mathrm{c}^{\lambda}, g^{\lambda} \in S_{n} . \\
& -\mathrm{L}\left(\mathrm{c}^{\lambda} \bmod \mathrm{n}^{2}\right) / \mathrm{L}\left(\mathrm{~g}^{\lambda} \bmod \mathrm{n}^{2}\right)=\mathrm{L}(\mathrm{c}) / \mathrm{L}(\mathrm{~g})=[\mathrm{c}]_{\mathrm{g}}=\mathrm{m}
\end{aligned}
$$

- Truly additive Homomorphic property:
$-E\left(m_{1}\right) \cdot E\left(m_{2}\right)=\left(g^{m_{1}} \cdot r_{1}{ }^{n}\right) \cdot\left(g^{m_{2}} \cdot r_{2}^{n}\right)=\left(g^{m_{1}+m_{2}} \cdot\left(r_{1} r_{2}\right)^{n}\right) \bmod Z^{*} n^{2}$ $=E\left(m_{1}+m_{2}\right)$

Security

- Decisional Composite Residuocity Assumption:
- There is no polynomial time algorithm which can decide whether a number is an $\mathrm{n}^{\text {th }}$ residue or not.
- Corollary: There is no polynomial time algorithm which can decide, given w, g, x, whether $x=[w]_{g}$
- Ciphertext: $c=g^{m} \cdot r^{n} \bmod Z^{*}{ }_{n}$.
- c is an encryption of m, iff $c=[g]_{m}$.
- Suppose that there is an algorithm which distinguishes between encryptions of m_{1} and of m_{2}
- Namely, the algorithm decides, given $\mathrm{c}, \mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~g}$, whether $c=\left[m_{1}\right]_{g}$ or $c=\left[m_{2}\right]_{g}$
- This algorithm solves the decisional composite residouocity problem

Keyword Search (KS): definition

- Input:
- Server/Bob $X=\left\{\left(x_{i} p_{i}\right)\right\}, 1 \leq i \leq N$.
- x_{i} is a keyword (e.g. number of a corrupt credit card)
- p_{i} is the payload (e.g. explanation why the card is corrupt)
- Client/Alice: w (search word) (e.g. credit card number)
- Output:
- Server: nothing
- Client:
- p_{i} if $\exists i$ s.t. $x_{i}=w$
- nothing otherwise
- Privacy: Server learns nothing about w, Client learns nothing about $\left(x_{i} p_{i}\right)$ for $x_{i} \neq w$

Keyword search

- Motivation: sometimes OT or PIR are not enough
- Bob:
- Has a list of N numbers of fraudulent credit cards
- His business is advising merchants on credit card fraud
- Alice (merchant):
- Received a credit card c, wants to check if it's in Bob's list
- Wants to hide card details from Bob
- Can they use oblivious transfer or PIR?
- Bob sets a table of $\mathrm{N}=10^{16} \approx 2^{53}$ entries, with 1 for each of the m corrupt credit cards, and 0 in all other entries.
- Run an oblivious transfer with the new table..
- ...but Bob's list is much shorter than 2^{53}

KS protocols using polynomials

- Tool: Oblivious Polynomial Evaluation (OPE)
- Server input: $P(x)=\sum_{i=0 \ldots d} a_{i} x^{i}$, polynomial of degree d.
- Client Input: w.
- Client's output: $P(w)$
- Privacy: server doesn't learn anything about w. Client learns nothing but $P(w)$.
- Common usage: source of $(d+1)$-wise independence.
- Implementation based on homomorphic encryption
- Client sends $E(w), E\left(w^{2}\right), \ldots, E\left(w^{d}\right)$.
- Sender returns $\sum_{i=0 \ldots d} E\left(a_{i} w^{i}\right)=E\left(\sum_{i=0 \ldots d} a_{i} w^{i}\right)=E(P(w))$.

KS using OPE (basic method)

- Server's input $X=\left\{\left(x_{i}, p_{i}\right)\right\}$.
- Server defines
- Polynomial $P(x)$ s.t. $P\left(x_{i}\right)=0$ for $x_{i} \in X . \quad($ degree $=N)$
- Polynomial $Q(x)$ s.t. $Q\left(x_{i}\right)=p_{i} / 0^{k}$ for $x_{i} \in X$. ($k=20$?)
$-Z(x)=r \cdot P(x)+Q(x)$, with a random r.
- $Z(x)=p_{i} / 0^{k}$ for $w \in X$
- $Z(w)$ is random for $w \notin X$
- Client/server run OPE of $Z(w)$
- If $w \notin X$ client learns nothing
- If $w \in X$ client learns p_{i}
- Overhead is $O(N)$

Reducing the Overhead using Hashing

- Server

- defines $L=N^{1 / 2}$ bins, maps L inputs to every bin (arbitrarily). (Essentially defines L different databases.)
- Defines polynomial Z_{j} for bin j. (Each Z_{i} uses a different random coefficient r for $Z_{i}(x)=r \cdot P_{i}(x)+Q_{i}(x)$.)
- Parties do an OPE of L polynomials of degree L. - Compute $Z_{1}(w), Z_{2}(w), \ldots, Z_{L}(w)$,
- Overhead:
- $O(L)=O\left(N^{1 / 2}\right)$ communication.
- $O(N)$ computation at the server.
- $O(L)=O\left(N^{1 / 2}\right)$ computation at the client.

Reducing the overhead using PIR
 (slightly more theoretical...)

- Server:
- Defines $L=N / \log N$ bins, and uses a public hash function H, chosen independently of X, to map inputs to bins.
- Whp, at most $m=O(\log (N))$ items in every bin.
- Therefore, define polynomials of degree m for every bin.
- Client:
- Does, in parallel, an OPE for all polynomials.
- Server has intermediate results $E\left(Z_{1}(w)\right), \ldots, E\left(Z_{L}(w)\right)$.
- Uses PIR to obtain answer from bin $H(w)$, i.e. $E\left(Z_{H(w)}(w)\right)$.
- Overhead:
- Communication: $\log \mathrm{N}+$ overhead of PIR. A total of polylog(N) bits.
- Client computation is $O(m)=O(\log N)$
- Server computation is $O(N)$

