

Related papers

- PIR

- B. Chor, E. Kushilevitz, O. Goldreich, M. Sudan: Private Information Retrieval. J. ACM 45(6): 965-981 (1998)
- E. Kushilevitz, R. Ostrovsky: Replication is NOT Needed: SINGLE Database, Computationally-Private Information Retrieval. FOCS 1997: 364-373

Private Information Retrieval (PIR)

- A special case of secure two-party computation
- One party (aka sender, server) has a large database.
- The other party (aka receiver, client) wants to learn a specific item in the database, while hiding its query from the database owner
- For example, a patent database, or web access.
- The model:
- Sender has N bits, $\mathrm{b}_{1}, \ldots, \mathrm{~b}_{\mathrm{N}}$.
- Receiver has a query $i \in[1, N]$.
- Receiver learns b_{i} (and possibly additional information)
- Sender learns nothing.
- The communication is sublinear, i.e. o(N).
- (This model is not very realistic, but is convenient since it's the most basic form of PIR)

Simple protocols

1. Receiver sends ito sender

- No privacy.
- Sender sends the whole database to the receiver
- Best privacy for the receiver.
- Communication is $\mathrm{O}(\mathrm{N})$.
- Receiver hides its real question among other randomly chosen questions
- Sends i_{1}, \ldots, i_{m}, where there is a j s.t. $i_{j}=i$, and $m<N$.
- Sender returns the corresponding m bits of its database.
- There is some privacy, but the sender can find i with probability $1 / \mathrm{m}$ (possibly even with better probability).

How is PIR different from OT (oblivious transfer)?

- PIR

- Sender learns nothing about the query (i.e., about i).
- Receiver might learn more than the item it is interested in $\left(b_{i}\right)$.
- Communication is sublinear in N.
- Requires either $\mathrm{O}(\mathrm{N})$ public key operations, or multiple senders.

1-out-of-N Oblivious transfer

- Sender learns nothing about the query (i.e., about i).
- Receiver learns nothing but the result of its query $\left(b_{i}\right)$.
- Communication can be linear in N .
- Best implementation requires $\log (N)$ public key operations.

Results

- Unconditional security
- consider a setting where
- $k \geq 2$ servers know the database
- Servers do not collude. No single server learns about i.
- The client can send different queries to different servers
- Results [CGKS and subsequent work]
- 2 servers: $\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ communication
- K servers: $\mathrm{O}\left(\mathrm{N}^{1 / \Omega\{k\})}\right.$ communication
$-\log N$ servers: Poly($\log (N))$ communication.

Results

- Unconditional security

- Unconditional privacy, with a single server, requires $\Omega(\mathrm{N})$ communication [CGKS]
- A communication $c=(x, i)$ is possible if for a database x and user interested in i there is a positive probability for c .
- Fix i, and assume that, considering all possible values of the database, the number of possible c is smaller than 2^{N}.
- Therefore there are (x, i) and (y, i) s.t. c is possible for both.
- By the privacy requirement, c must be possible for every (x, j), and similarly for every (y, j).
- There is a j for which $x \neq y$.
- But c is possible for both (x, j) and (y, j). A contradiction!

Two-server PIR

- Best result: $\mathrm{N}^{1 / 3}$ communication. We will show a protocol with $\mathrm{N}^{1 / 2}$ communication.
- There is a simple protocol with $\mathrm{O}(\mathrm{N})$ communication:
- Receiver picks a random vector V_{0} of length N .
- It sets V_{1} to be equal to V_{0}, except for the bit in location i , whose value is reversed.
- It sends V_{0} to P_{0}, and V_{1} to P_{1}.
- Server ${ }_{0}$ sends to R a bit c^{0}, which is the xor of the bits b_{i}, for which the corresponding bit in V_{0} is 1 , namely $\sum \mathrm{V}_{0, i} \mathrm{~b}_{\mathrm{i}}$.
- Server ${ }_{1}$ sends a bit c^{1}, computed using V_{1}.
- The receiver computes $b_{i}=c^{0} \oplus c 1$.
- Privacy: Each server sees a random vector.

Two-server PIR with $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$ communication

- Suppose $\mathrm{N}=\mathrm{m} \times \mathrm{m}$.
- Database is $\left\{b_{i, j}\right\}_{1 \leq i, j \leq m}$
- Receiver is interested in $b_{\alpha, \beta}$
- picks a random vector V_{0} of length m .
- V_{1} is V_{0} with bit α reversed
- Sends V_{0} to S_{0} and V_{1} to S_{1}
- S_{0} computes and sends the corresponding xor of every column: $c_{j}^{0}=\oplus_{i=1 \ldots m} V_{0, i} b_{i, j}$ (m results in total)
- S_{1} computes and sends similar values c^{1} with V_{1}
- The receiver ignores all values but $\mathrm{c}^{0}{ }_{\beta}, \mathrm{c}^{1}{ }_{\beta}$. Computes
$\mathrm{b}_{\alpha, \text { beta }}=\mathrm{c}_{\beta} \oplus \mathrm{c}^{1}{ }_{\beta}$ (but can also compute all $\mathrm{b}_{\alpha, \mathrm{j}}$)

Four-server PIR with $\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ communication

- We showed a four-server PIR where the receiver sends $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$ bits and each server send $\mathrm{O}(1)$ bits.
- We can use this protocol as a subroutine:
- Given a database of size N , divide it to $\mathrm{N}^{1 / 3}$ smaller databases of size $\mathrm{N}^{2 / 3}$ each.
- Apply the previous protocol to all of them in parallel. The receiver constructs sets $\mathrm{V}^{\mathrm{R}}, \mathrm{V}_{\mathrm{C}}$ for the database which includes the bit it is interested in, and uses these sets for all databases.
- The receiver sends $\mathrm{O}\left(\left(\mathrm{N}^{2 / 3}\right)^{1 / 2}\right)=\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ bits.
- Each sender returns $\mathrm{N}^{1 / 3} \cdot \mathrm{O}(1)=\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ bits.
- The receiver learns one value from every database.

Four-server PIR with $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$ communication

- Here receiver can only compute $\mathrm{b}_{\alpha, \beta}$ (and some additional xors of inputs)
- Four servers, $\mathrm{S}_{0,0}, \mathrm{~S}_{0,1}, \mathrm{~S}_{1,0}, \mathrm{~S}_{1,1}$. Each sends only $\mathrm{O}(1)$ bits
- Database is $\left\{b_{i, j}\right\}_{1 \leq i, j \leq m}$. Receiver is interested in $b_{\alpha, \beta}$.
- Receiver picks random $V^{R}{ }_{0}, V^{C}$ of m bits each. Computes $V^{R}{ }_{1}, V^{C}{ }_{1}$ by reversing bit α in $V^{0}{ }_{0}$, and bit β in $V^{C}{ }_{0}$
- Sends vectors $\mathrm{VR}_{0}, \mathrm{~V}^{\mathrm{C}}$ to $\mathrm{S}_{0,0}$, vectors $\mathrm{V}^{\mathrm{R}}, \mathrm{V}^{\mathrm{C}}{ }_{1}$ to $\mathrm{S}_{0,1}$, etc.
- Each $\mathrm{S}_{\mathrm{a}, \mathrm{b}}$ computes the xor of the bits whose coordinates correspond to " 1 " values in $\mathrm{V}^{\mathrm{R}}, \mathrm{VC}_{\mathrm{b}}$, and returns the result.
- The receiver computes the xor of the bits it receives...

Computational PIR [KO]

- Security is not unconditional, but rather depends on a computational assumption about the hardness of some problem
- Enables to run PIR with a single server (unlike the infeasibility result for unconditional PIR)

Computational PIR

- We will show computational PIR based on the existence of Homomorphic encryption
- Homomorphic encryption
- Public key encryption

1. Given $E(x)$ it is possible to compute, without knowledge of the secret key, $E(c \cdot x)$, for every c.
2. Given $E(x)$ and $E(y)$, it is possible to compute $E(x+y)$

- We actually need a weaker property
- Can be implemented based on the hardness of Quadratic Residousity, ElGamal encryption, etc.

Computational PIR: reducing the communication via recursion

- In the final step the sender sends s values, while the receiver is interested in only one of them.
- They can run a PIR in which the receiver learns this value!
- Set $\mathrm{t}=\mathrm{N}^{1 / 3}$. Run the previous protocol without the final step.
$-\mathrm{O}(\mathrm{t})=\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$ communication for this step.
- At the end of the protocol the sender has $\mathrm{N}_{1}=\mathrm{N}^{2 / 3}$ values (each of length k, which is the length of the encryption).
- The parties run the previous protocol k times (for each bit of the answers) with $s=t=\left(N_{1}\right)^{1 / 2}=\mathrm{N}^{1 / 3}$.
- Communication: $R \Rightarrow S: \mathrm{kN}^{1 / 3}+\mathrm{k}^{2} \mathrm{~N}^{1 / 3}=\mathrm{O}\left(\mathrm{N}^{1 / 3}\right)$

$$
-\quad S \Rightarrow R: k^{2} N^{1 / 3} \quad=O\left(N^{1 / 3}\right)
$$

Computational PIR: basic scheme

- Suppose $\mathrm{N}=\mathrm{s} \times \mathrm{t}$.
- Database is $\left\{b_{i, j}\right\}_{1 \leq i \leq s, 1 \leq j \leq t}$
- Receiver is interested in $b_{\alpha, \beta}$
- Receiver computes a vector V of size $t:\left(E\left(e_{1}\right), \ldots, E\left(e_{t}\right)\right)$, where $\mathrm{e}_{\mathrm{j}}=0$ if $\mathrm{j} \neq \beta$, and $\mathrm{e}_{\beta}=1$.
- Receiver sends V to sender.
- Sender computes, for every row $1 \leq i \leq s$,
$c_{i}=\sum_{j=1}{ }^{t} E\left(e_{j} \cdot b_{i, j}\right)=E\left(\sum_{j=1}{ }^{t} e_{j} \cdot b_{i, j}\right)=b_{i, \beta}(O(N)$ exponen. $)$
- Sender sends $\mathrm{c}_{1}, \ldots, \mathrm{C}_{\mathrm{s}}$ to receiver. Receiver learns C_{α}.
- Setting $s=t=N^{1 / 2}$ results in $\mathrm{O}\left(\mathrm{N}^{1 / 2}\right)$ communication.
- Can we do better?

Computational PIR: continuing the recursion

- Start from $t=\mathrm{N}^{1 / 4}$.
- There are $\mathrm{N}^{3 / 4}$ answers, each of length k.
- Run the previous protocol on these answers, once for every bit of the answer (a total of k times).
- The communication overhead is $\mathrm{O}\left(\mathrm{k}^{3} \mathrm{~N}^{1 / 3}\right)$ bits.
- In the general case
- The recursion has L steps
- Start from $\mathrm{t}=\mathrm{N}^{1 /(\mathrm{L}+1)}$
- The total communication is $\mathrm{O}\left(\mathrm{N}^{1 /(L+1)} \cdot \mathrm{k}^{\mathrm{L}}\right)$
- Setting $L=O\left((\log N / \log k)^{1 / 2}\right)$ results in $N^{1 /(L+1)}=k^{L}$, and total communication $2 \mathrm{O}(\sqrt{ }(\log \mathrm{N} \log \mathrm{k}))$
- There is another PIR protocol with polylogN comm.

Sender privacy

- PIR does not prevent receiver from learning more than a single element of the database.

PIR

- Sender learns nothing about
the query (i.e., about i).
- Receiver might learn more than the item it is interested in $\left(b_{i}\right)$. - Communication is sublinear in N.
- 1-out-of-N Oblivious transfer
- Sender learns nothing about the query (i.e., about i).
- Receiver learns nothing but the result of its query $\left(b_{i}\right)$ - Communication can be linear in N
- Is it possible to get the best in both worlds?

Keyword search

- Motivation: sometimes OT or PIR arenot enough
- Bob:
- Has a list of N numbers of fraudulent credit cards
- His business is advising merchants on credit card fraud
- Alice (merchant):
- Received a credit card c, wants to check if it's in Bob's list
- Wants to hide card details from Bob
- Can they use oblivious transfer or PIR?
- Bob sets a table of $N=10^{16} \approx 2^{53}$ entries, with 1 for each of the m corrupt credit cards, and 0 in all other entries.
- Run an oblivious transfer with the new table...
- ...but Bob's list is much shorter than 2^{53}

Symmetrical PIR (SPIR)

- SPIR is PIR with sender privacy:

- Sender learns nothing about the query (i.e., about i).
- Receiver learns nothing but the result of its query.
- Communication is sublinear in N .
- OT + PIR = SPIR
- Recall 1-out-of-N OT:
- $2 \log N$ keys are used to encrypt N items.
- Receiver uses $\log N$ invocations of $O T$ to learn $\log N$ keys.
- All N encrypted items are sent to the receiver, who can decrypt on of them.
- The last step can be replaced by PIR.

Keyword Search (KS): definition

- Input:

$$
\text { - Server/Bob } X=\left\{\left(x_{i}, p_{i}\right)\right\}, 1 \leq i \leq N .
$$

- x_{i} is a keyword (e.g. number of a corrupt credit card)
- p_{i} is the payload (e.g. explanation why the card is corrupt)
- Client/Alice: w (search word) (e.g. credit card number)
- Output:
- Server: nothing
- Client:
- p_{i} if \exists is.t. $x_{i}=w$
- nothing otherwise

Privacy: Server learns nothing about w, Client learns nothing about $\left(x_{i} p_{i}\right)$ for $x_{i} \neq w$

Keyword Search: Privacy

- Client privacy:
- (indistinguishability) \forall server program S', $\forall X, w, w^{\prime}$, the views of S^{\prime} in the protocol on server input X , for client inputs w and w^{\prime}, are computationally indistinguishable.

- Server privacy:
- (comparison with ideal model) \forall client program C', there is a client program $\mathrm{C}^{\prime \prime}$ in the ideal model, s.t. $\forall(X, w)$ the outputs of C' and C" are computationally indistinguishable.

\approx

KS using OPE (basic method)

- Server's input $X=\left\{\left(x_{i}, p_{i}\right)\right\}$.
- Server defines
- Polynomial $P(x)$ s.t. $P\left(x_{i}\right)=0$ for $x_{i} \in X . \quad($ degree $=N)$
- Polynomial $Q(x)$ s.t. $Q\left(x_{i}\right)=p_{i} / 0^{k}$ for $x_{i} \in X$. ($k=20$?)
$-Z(x)=r \cdot P(x)+Q(x)$, with a random r.
- $Z(X)=p_{i} / 0^{k}$ for $w \in X$
- $Z(w)$ is random for $w \notin X$
- Client/server run OPE of $Z(w)$
- If $w \notin X$ client learns nothing
- If $w \in X$ client learns p_{i}
- Overhead is $O(N)$

Specific KS protocols using polynomials

- Tool: Oblivious Polynomial Evaluation (OPE) [NP] - Server input: $P(x)=\sum_{i=0 \ldots d} a_{i} x^{i}$, polynomial of degree d.
- Client Input: w.
- Client's output: $P(w)$
- Privacy: server doesn't learn anything about w. Client learns nothing but $P(w)$.
- Common usage: source of ($d+1$)-wise independence.
- Implementation based on homomorphic encryption - Homomorphic encryption: Given $E(x), E(y)$, can compute $E(x+y), E(c \cdot x)$, even without knowing the decryption key.
- Client sends $E(w), E\left(w^{2}\right), \ldots, E\left(w^{d}\right)$.
- Sender returns $\Sigma_{i=0 \ldots d} E\left(a_{i} w^{i}\right)=E\left(\sum_{i=0 \ldots d} a_{i} w^{i}\right)=E(P(w))$.

Reducing the Overhead using Hashing

- Server
- defines $L=N^{1 / 2}$ bins, maps L inputs to every bin (arbitrarily). (Essentially defines L different databases.)
- Defines polynomial Z_{j} for bin j. (Each Z_{j} uses a different random coefficient r for $Z_{i}(x)=r \cdot P_{i}(x)+Q_{i}(x)$.)
- Parties do an OPE of L polynomials of degree L.
- Compute $Z_{1}(w), Z_{2}(w), \ldots, Z_{L}(w)$,
- Overhead:
- $O(L)=O\left(N^{1 / 2}\right)$ communication.
$-O(N)$ computation at the server.
- $O(L)=O\left(N^{1 / 2}\right)$ computation at the client.

Reducing the overhead using PIR

(slightly more theoretical...)

- Server:

- Defines $L=N / \log N$ bins, and uses a public hash function H, chosen independently of X, to map inputs to bins.
- Whp, at most $m=O(\log (N))$ items in every bin
- Therefore, define polynomials of degree m for every bin.
- Client:
- Does, in parallel, an OPE for all polynomials.
- Server has intermediate results $E\left(Z_{1}(w)\right), \ldots, E\left(Z_{L}(w)\right)$.
- Uses PIR to obtain answer from bin $H(w)$, i.e. $E\left(Z_{H(w)}(w)\right)$.
- Overhead:
- Communication: $\log N+$ overhead of PIR. A total of polylog(N) bits.
- Client computation is $O(m)=O(\log N)$
- Server computation is $O(N)$

