
1

page 1March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Advanced Topics in Cryptography

Lecture 3: Private Information Retrieval
(PIR), Keyword search

Benny Pinkas

2

page 2March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Related papers

• PIR

– B. Chor, E. Kushilevitz, O. Goldreich, M. Sudan: Private
Information Retrieval. J. ACM 45(6): 965-981 (1998)

– E. Kushilevitz, R. Ostrovsky: Replication is NOT Needed:
SINGLE Database, Computationally-Private Information
Retrieval. FOCS 1997: 364-373

3

page 3March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Private Information Retrieval (PIR)

• A special case of secure two-party computation
– One party (aka sender, server) has a large database.
– The other party (aka receiver, client) wants to learn a

specific item in the database, while hiding its query from
the database owner.

– For example, a patent database, or web access.
• The model:

– Sender has N bits, b1,…,bN.
– Receiver has a query i∈ [1,N].
– Receiver learns bi (and possibly additional information)
– Sender learns nothing.
– The communication is sublinear, i.e. o(N).

• (This model is not very realistic, but is convenient since it’s the
most basic form of PIR)

4

page 4March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Simple protocols

1. Receiver sends i to sender
– No privacy.

• Sender sends the whole database to the receiver
– Best privacy for the receiver.
– Communication is O(N).

• Receiver hides its real question among other
randomly chosen questions

– Sends i1,…,im, where there is a j s.t. ij=i, and m<N.
– Sender returns the corresponding m bits of its database.
– There is some privacy, but the sender can find i with

probability 1/m (possibly even with better probability).

5

page 5March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

How is PIR different from OT (oblivious transfer)?

• PIR
– Sender learns nothing about

the query (i.e., about i).
– Receiver might learn more than

the item it is interested in (bi).
– Communication is sublinear in

N.

– Requires either O(N) public key
operations, or multiple senders.

• 1-out-of-N Oblivious transfer
– Sender learns nothing about

the query (i.e., about i).
– Receiver learns nothing but

the result of its query (bi).
– Communication can be linear

in N.

– Best implementation requires
log(N) public key operations.

6

page 6March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Results

• Unconditional security
• Unconditional privacy, with a single server, requires Ω(N)

communication [CGKS]
– A communication c=(x,i) is possible if for a database x and

user interested in i there is a positive probability for c.
– Fix i, and assume that, considering all possible values of the

database, the number of possible c is smaller than 2N.
– Therefore there are (x,i) and (y,i) s.t. c is possible for both.
– By the privacy requirement, c must be possible for every

(x,j), and similarly for every (y,j).
– There is a j for which x≠ y.
– But c is possible for both (x,j) and (y,j). A contradiction!

7

page 7March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Results

• Unconditional security
– consider a setting where

• k≥ 2 servers know the database

• Servers do not collude. No single server learns about i.

• The client can send different queries to different servers

• Results [CGKS and subsequent work]
– 2 servers: O(N1/3) communication
– K servers: O(N1/Ω{k}) communication
– log N servers: Poly(log(N)) communication.

8

page 8March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Two-server PIR

• Best result: N1/3 communication. We will show a
protocol with N1/2 communication.

• There is a simple protocol with O(N) communication:
– Receiver picks a random vector V0 of length N.
– It sets V1 to be equal to V0, except for the bit in location i,

whose value is reversed.
– It sends V0 to P0, and V1 to P1.
– Server0 sends to R a bit c0, which is the xor of the bits bi,

for which the corresponding bit in V0 is 1, namely ∑ V0,ibi.
– Server1 sends a bit c1, computed using V1.
– The receiver computes bi = c0 ⊕ c1.
– Privacy: Each server sees a random vector.

9

page 9March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Two-server PIR with O(N1/2) communication

• Suppose N=m× m.
• Database is { bi,j }1≤ i,j ≤ m

• Receiver is interested in bα,β

• picks a random vector V0 of length m.
• V1 is V0 with bit α reversed
• Sends V0 to S0 and V1 to S1

• S0 computes and sends the corresponding xor of
every column: c0

j= ⊕i=1…m V0,i bi,j (m results in total)
• S1 computes and sends similar values c1

j
with V

1
• The receiver ignores all values but c0

β, c1
β. Computes

bα,beta
= c0

β ⊕ c1
β (but can also compute all bα,j)

10

page 10March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Four-server PIR with O(N1/2) communication

• Here receiver can only compute bα,β (and some additional
xors of inputs)

• Four servers, S0,0,S0,1,S1,0,S1,1. Each sends only O(1) bits

• Database is { bi,j }1≤ i,j ≤ m. Receiver is interested in bα,β.
• Receiver picks random VR

0,VC
o of m bits each. Computes

VR
1,VC

1 by reversing bit α in VR
0, and bit β in VC

o.
• Sends vectors VR

0,VC
0 to S0,0, vectors VR

0,VC
1 to S0,1, etc.

• Each Sa,b computes the xor of the bits whose coordinates
correspond to “1” values in VR

a,VC
b, and returns the result.

• The receiver computes the xor of the bits it receives…

11

page 11March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Four-server PIR with O(N1/3) communication

• We showed a four-server PIR where the receiver sends
O(N1/2) bits and each server send O(1) bits.

• We can use this protocol as a subroutine:
– Given a database of size N, divide it to N1/3 smaller

databases of size N2/3 each.
– Apply the previous protocol to all of them in parallel. The

receiver constructs sets VR,VC for the database which
includes the bit it is interested in, and uses these sets for
all databases.

– The receiver sends O((N2/3)1/2)=O(N1/3) bits.
– Each sender returns N1/3 ⋅ O(1) = O(N1/3) bits.
– The receiver learns one value from every database.

12

page 12March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Computational PIR [KO]

• Security is not unconditional, but rather depends on a
computational assumption about the hardness of some
problem

• Enables to run PIR with a single server (unlike the
infeasibility result for unconditional PIR)

13

page 13March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Computational PIR

• We will show computational PIR based on the
existence of Homomorphic encryption

• Homomorphic encryption
– Public key encryption
1. Given E(x) it is possible to compute, without knowledge

of the secret key, E(c⋅x), for every c.
2. Given E(x) and E(y), it is possible to compute E(x+y)

• We actually need a weaker property
• Can be implemented based on the hardness of

Quadratic Residousity, ElGamal encryption, etc.

14

page 14March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Computational PIR: basic scheme

• Suppose N= s × t.
• Database is { bi,j }1≤ i ≤ s, 1≤ j ≤ t

• Receiver is interested in bα,β

• Receiver computes a vector V of size t: (E(e1),…,E(et)),
where ej=0 if j≠ β, and eβ=1.

• Receiver sends V to sender.
• Sender computes, for every row 1≤ i ≤ s,

ci = ∑j=1
t E(ej⋅ bi,j) = E(∑j=1

t ej⋅ bi,j) = bi,β (Ο(Ν) exponen.)

• Sender sends c1,…,cs to receiver. Receiver learns cα.
• Setting s=t=N1/2 results in O(N1/2) communication.
• Can we do better?

15

page 15March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Computational PIR: reducing the communication
via recursion

• In the final step the sender sends s values, while the
receiver is interested in only one of them.
– They can run a PIR in which the receiver learns this value!

• Set t=N1/3. Run the previous protocol without the final
step.
– O(t)=O(N1/3) communication for this step.
– At the end of the protocol the sender has N1=N2/3 values

(each of length k, which is the length of the encryption).
– The parties run the previous protocol k times (for each bit

of the answers) with s=t=(N1)1/2=N1/3.
– Communication: R⇒S: kN1/3+k2N1/3 = O(N1/3)
– S⇒R: k2N1/3 = O(N1/3)

16

page 16March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Computational PIR: continuing the recursion

• Start from t = N1/4.
• There are N3/4 answers, each of length k.
• Run the previous protocol on these answers, once for

every bit of the answer (a total of k times).
– The communication overhead is O(k3N1/3) bits.

• In the general case
– The recursion has L steps
– Start from t=N1/(L+1)

– The total communication is O(N1/(L+1) ⋅ kL)
– Setting L=O((log N / log k)1/2) results in N1/(L+1) = kL, and

total communication 2O(√(log N /log k))

• There is another PIR protocol with polylogN comm.

17

page 17March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Sender privacy

• PIR does not prevent receiver from learning more than
a single element of the database.

• PIR
– Sender learns nothing about

the query (i.e., about i).
– Receiver might learn more than

the item it is interested in (bi).
– Communication is sublinear in

N.

• 1-out-of-N Oblivious transfer
– Sender learns nothing about

the query (i.e., about i).
– Receiver learns nothing but

the result of its query (bi).
– Communication can be linear

in N.

• Is it possible to get the best in both worlds?

18

page 18March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Symmetrical PIR (SPIR)

• SPIR is PIR with sender privacy:
– Sender learns nothing about the query (i.e., about i).
– Receiver learns nothing but the result of its query.
– Communication is sublinear in N.

• OT + PIR = SPIR
– Recall 1-out-of-N OT:

• 2logN keys are used to encrypt N items.

• Receiver uses logN invocations of OT to learn logN keys.

• All N encrypted items are sent to the receiver, who can
decrypt on of them.

• The last step can be replaced by PIR.

19

page 19March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Keyword search

• Motivation: sometimes OT or PIR arenot enough
• Bob:

– Has a list of N numbers of fraudulent credit cards
– His business is advising merchants on credit card fraud

• Alice (merchant):
– Received a credit card c, wants to check if it’s in Bob’s list
– Wants to hide card details from Bob

• Can they use oblivious transfer or PIR?
– Bob sets a table of N=1016 ≈ 253 entries, with 1 for each of

the m corrupt credit cards, and 0 in all other entries.
– Run an oblivious transfer with the new table…
– …but Bob’s list is much shorter than 253

20

page 20March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Keyword Search (KS): definition

• Input:
– Server/Bob X={ (xi,pi) }, 1 ≤ i ≤ N.

• xi is a keyword (e.g. number of a corrupt credit card)

• pi is the payload (e.g. explanation why the card is corrupt)

– Client/Alice: w (search word) (e.g. credit card number)

• Output:
– Server: nothing
– Client:

• pi if ∃ i s.t. xi=w
• nothing otherwise

• Privacy: Server learns nothing about w, Client learns nothing
about (xi,pi) for xi ≠ w

(X1,P1) … (Xn,Pn)(X2,P2)Server:

Client: w

Client output: (Xj ,Pj) if w=xj

21

page 21March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Keyword Search: Privacy

• Client privacy:
– (indistinguishability) ∀∀∀∀server program S’, ∀∀∀∀ X,w,w’, the

views of S’ in the protocol on server input X, for client
inputs w and w’, are computationally indistinguishable.

S’
w

S’
w’

≈

• Server privacy:
– (comparison with ideal model) ∀∀∀∀ client program C’, there is

a client program C’’ in the ideal model, s.t. ∀∀∀∀ (X,w) the
outputs of C’ and C’’ are computationally indistinguishable.

S’C’
w X S’C’

w XTTP
≈

X X

22

page 22March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Specific KS protocols using polynomials

• Tool: Oblivious Polynomial Evaluation (OPE) [NP]
– Server input: P(x) =Σi=0…d aixi, polynomial of degree d.
– Client Input: w.
– Client’s output: P(w)
– Privacy: server doesn’t learn anything about w. Client

learns nothing but P(w).
– Common usage: source of (d+1)-wise independence.

• Implementation based on homomorphic encryption
– Homomorphic encryption: Given E(x), E(y), can compute

E(x+y), E(c·x), even without knowing the decryption key.
– Client sends E(w), E(w2), …, E(wd).
– Sender returns Σi=0…d E(ai w i)=E(Σi=0…d ai w i)=E(P(w)).

23

page 23March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

KS using OPE (basic method)

• Server’s input X={(xi,pi)}.
• Server defines

– Polynomial P(x) s.t. P(xi)=0 for xi∈X. (degree = N)
– Polynomial Q(x) s.t. Q(xi)= pi |0k for xi∈X. (k=20?)

– Z(x) = r·P(x)+Q(x), with a random r.
• Z(x) = pi |0

k for w∈X

• Z(w) is random for w∉X

• Client/server run OPE of Z(w)
– If w∉X client learns nothing
– If w∈X client learns pi

– Overhead is O(N)

24

page 24March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Reducing the Overhead using Hashing

• Server
– defines L=N1/2 bins, maps L inputs to every bin (arbitrarily).

(Essentially defines L different databases.)
– Defines polynomial Zj for bin j. (Each Zj uses a different

random coefficient r for Zj(x) = r·Pj(x)+Qj(x).)
• Parties do an OPE of L polynomials of degree L.

– Compute Z1(w), Z2(w),…, ZL(w),
• Overhead:

– O(L)=O(N1/2) communication.
– O(N) computation at the server.
– O(L)=O(N1/2) computation at the client.

25

page 25March 26, 2006 Advanced Topics in Cryptography, Benny Pinkas

Reducing the overhead using PIR
(slightly more theoretical…)

• Server:
– Defines L= N / log N bins, and uses a public hash function

H, chosen independently of X, to map inputs to bins.
– Whp, at most m=O(log(N)) items in every bin.
– Therefore, define polynomials of degree m for every bin.

• Client:
– Does, in parallel, an OPE for all polynomials.
– Server has intermediate results E(Z1(w)),…,E(ZL(w)).
– Uses PIR to obtain answer from bin H(w), i.e. E(ZH(w)(w)).

• Overhead:
– Communication: logN + overhead of PIR. A total of

polylog(N) bits.
– Client computation is O(m)=O(log N)
– Server computation is O(N)

