Advanced Topics in Cryptography

Lecture 3 :

- A two-party protocol for a function which does not have a short circuit.
- Multi-party protocols.

Benny Pinkas

Related papers

- Secure computation of medians

- Aggarwal, N. Mishra and B. Pinkas, Secure Computation of the K'th-ranked Element, Eurocrypt '2004.
- Secure Computation
- Ronald Cramer and Ivan Damgard, Multiparty

Computation, an Introduction, Lecture notes.
http://www.daimi.au.dk/~ivan/mpc 2004.pdf

- Slides on MPC computation, Ivan Damgard, http://www.daimi.au.dk/~ivan/MPC2005.pdf.
- M. Ben-Or, S. Goldwasser, A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation. $20^{\text {th }}$ ACM symposium on Theory of Computing (STOC), 1988

Secure Function Evaluation

- Major Result [Yao]: "Any function that can be evaluated using polynomial resources can be securely evaluated using polynomial resources" (under some cryptographic assumption)
- This is shown through a transformation which takes a combinatorial circuit computing a function F, and constructs a secure protocol computing $F()$ and leaking no other information.
- This protocol is efficient for medium size circuits, but what about functions which cannot be represented as small circuits?

$k^{\text {th }}$-ranked element (e.g. median)

- Inputs:
- Alice: $S_{A} \quad$ Bob: S_{B}
- Large sets of unique items ($\in \mathrm{D}$).
- Output:
$-x \in S_{A} \cup S_{B}$ s.t. x has $k-1$ elements smaller than it.
- The rank k
- Could depend on the size of input datasets.
- Median: $\mathrm{k}=\left(\left|\mathrm{S}_{\mathrm{A}}\right|+\left|\mathrm{S}_{\mathrm{B}}\right|\right) / 2$
- Motivation:
- Basic statistical analysis of distributed data.
- E.g. histogram of salaries in CS departments

An (insecure) two-party median protocol

L_{A} lies below the median, R_{B} lies above the median.

$$
\left|\mathrm{L}_{\mathrm{A}}\right|=\left|\mathrm{R}_{\mathrm{B}}\right|
$$

$$
\sqrt{1}
$$

New median is same as original median.
Recursion \rightarrow Need log n rounds (assume each set contains $n=2^{i}$ items)

Secure computation in the case of large circuit

 representation- The Problem:
- The size of a circuit for computing the $\mathrm{k}^{\text {th }}$ ranked element are at least linear in k .
- Generic constructions using circuits [Yao ...] have communication complexity which is linear in the circuit size, and therefore in k .
- However, it is sometimes possible to design specific protocols for specific problems, and obtain a much better overhead.
- We will show such a protocol for computing the $\mathrm{k}^{\text {th }}$ ranked element, for the case of semi-honest parties.

A Secure two-party median protocol

Proof of security

Now, compute the median of two sets of size k. Size should be a power of 2 .
median of new inputs $=k^{\text {th }}$ element of original inputs

Secure multi-party computation

- Problem statement:

- n players $P_{1}, P_{2}, \ldots, P_{n}$
- Player P_{i} has input x_{i}
- There is a known function $f\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots y_{n}\right)$
- Goals:
- P_{i} should learn y_{i}, and nothing else (except for what can be computed from x_{i} and y_{i})
- This property should also hold for coalitions of corrupt parties (e.g., $P_{1}, \ldots, P_{n / 3}$ should learn nothing but $\left.\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n} / 3}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n} / 3}\right)$
- Security should hold even against malicious parties
- Examples...

Defining security

- It is not enough to list the desired properties that the protocol should satisfy
- How can we be sure that we covered all properties?
- Basic security definition: comparison to an ideal scenario
- In the ideal scenario there is a trusted party which receives x_{1}, \ldots, x_{n}, computes the function and sends y_{i} to P_{i}.
- The real protocol is secure if its execution reveals no more than in the ideal scenario.
- The actual definition is much more complicated, in particular if we consider multiple invocations of the same protocol.

More on MPC

- Generality: MPC is extremely general, covers all protocol problems.
- Adversaries:
- Semi-honest vs. malicious
- Static (decide in advance which parties to corrupt) vs. adaptive (decide on the fly which parties to corrupt)
- Unbounded vs. probabilistic polynomial-time

More on MPC

- Bounded corruption: We will consider scenarios where there is a bound on the number of parties which the adversary can corrupt.
- Namely, there is a bound t and it is assumed that the adversary corrupts no more than t of the n parties.
- Synchronous network: communication proceeds in rounds. All messages sent in during a round are received during the same round.
- Adversarial power:
- Information theoretic scenario: adversary cannot listen to communication channels, except those to/from parties it controls. (This does not make sense in the two-party case)
- Cryptographic scenario: adversary sees all messages.

What is known

- Information theoretic scenario:
- Semi-honest, adaptive adversary: any function can be computed iff adversary controls up to $\mathrm{t}<\mathrm{n} / 2$ parties.
- Malicious, adaptive adversary: any function can be computed iff adversary controls up to $t<n / 3$ parties.
- If broadcast is available, can withstand up to $\mathrm{t}<\mathrm{n} / 2$.
- Cryptographic scenario:
- Semi-honest, adaptive, polynomial-time adversary: assuming one-way trapdoor permutations exist, any function can be computed if $\mathrm{t}<\mathrm{n}$
- Malicious, adaptive, polynomial-time adversary: assuming one-way trapdoor permutations exist, any function can be computed if $\mathrm{t} \mathrm{n} / 2$.

An MPC protocol for semi-honest parties

- The first step of the protocol:

- Each P_{i} generates a ($t+1$)-out-of-n sharing of its input x_{i}
- Namely, chooses a random polynomial $f_{i}()$ over Z_{p}^{*} such that $\mathrm{f}_{\mathrm{i}}(0)=\mathrm{x}_{\mathrm{i}}$
- Any subset of t shares does not leak any information about x_{i}
- t shares enable to reconstruct x_{i} using polynomial interpolation
- Every P_{i} sends to each $P_{j}(j \neq i)$ the value $f_{i}(j)$
- The protocol continues by induction from the input wires to the output wires.
- We will show that for every gate, if the parties know shares of the input values, they can compute shares of the output values.

An MPC protocol for semi-honest parties

- We will show a construction in the unconditional security scenario, against semi-honest, adaptive adversaries which control up to $\mathrm{t}<\mathrm{n} / 2$ parties.
- The basic idea:
- Any input value can be shared between the n participants, such that no t of them can reconstruct it.
- It is possible to make computations on shared values.
- Initial step:
- Write the function as an arithmetic circuit modulo a prime number p.
- Note that arithmetic circuits can be much more compact than combinatorial (Boolean) circuits. For example, for computing $a+b$ or $a \cdot b$.

Computation stage

- All parties participate in the computation of every gate
- Addition gate: $\mathrm{c}=\mathrm{a}+\mathrm{b}$
- The parties must generate a sharing of c.
- Namely, there should be a polynomial $f_{c}()$ of degree t,
such that $f_{c}()$ is random except for $f_{c}(0)=c$
- and each P_{i} has the share $\mathrm{c}_{\mathrm{i}}=\mathrm{f}_{\mathrm{c}}(\mathrm{i})$
- The protocol:
- Each player P_{i} already has shares of a and b.
- Namely, shares $a_{i}=f_{a}(i)$ and $b_{i}=f_{b}(i)$ of polynomials $f_{a}()$ and $f_{b}()$ of degree t, for which $f_{a}(0)=a$ and $f_{b}(0)=b$.
$-P_{i}$ sets $c_{i}=a_{i}+b_{i}=f_{a}(i)+f_{b}(i)=f_{c}(i)$
- No communication is needed for this computation.

Computation stage: multiplication gate

- Each player P_{i} already has shares $a_{i}=f_{a}(i)$ and $b_{i}=f_{b}(i)$.
- Needs to have a share d_{i} of $d=a \cdot b$.
- First attempt:
$-P_{i}$ sets $d_{i}=a_{i} \cdot b_{i}=f_{d}(i)$.
- Obtains a share of $f_{a}() \cdot f_{b}()$
- Indeed, $f_{d}(0)=d=a \cdot b$.
- But $f_{d}()$ is of degree $2 t$ and not t.
- If we do this twice, the degree becomes $4 \mathrm{t}>\mathrm{n}$...

Computing multiplication gates

- Each P_{i} creates a random polynomial g_{i} of degree t such that $g_{i}(0)=d_{i}$
- We need the parties to share $g(x)=\sum_{i=1}{ }^{n} r_{i} \cdot g_{i}(x)$
- P_{i} sends to every P_{j} the value $g_{i}(j)$
- Every P_{j} receives $g_{1}(j), \ldots, g_{n}(j)$, and computes $g_{j}=\sum_{i=1}{ }^{n} r_{i} \cdot g_{i}(j)=g(j)$
- This is the desired share of $a \cdot b$

Computing multiplication gates

- P_{i} sets $d_{i}=a_{i} \cdot b_{i}=f_{d}(i)$.
- $f_{d}(i)$ is of degree $2 t<n$.
- We know that there are (Lagrange) coefficients $r_{1}, . ., r_{n}$ such that $d=f_{d}(0)=a \cdot b=r_{1} d_{1}+\ldots+r_{n} d_{n}=r_{1} f_{d}(1)+\ldots+r_{n} f_{d}(n)$.
- Each P_{i} creates a random polynomial g_{i} of degree t such that $g_{i}(0)=d_{i}$.
- Consider $\mathrm{g}(\mathrm{x})=\sum_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{r}_{\mathrm{i}} \cdot \mathrm{g}_{\mathrm{i}}(\mathrm{x})$
- This a polynomial of degree t.
$-g(0)=\sum_{i=1}{ }^{n} r_{i} \cdot g_{i}(0)=\sum_{i=1}{ }^{n} r_{i} \cdot d_{i}=d$.
- Now, if only we could provide each P_{i} with $g(i) \ldots$

Opening the outputs

- At the end of the circuit, for each value y_{i} it holds that the parties hold shares of a polynomial $f(x)$ of degree t such that $f(0)=y_{i}$.
- Each party P_{j} sends $f(j)$ to P_{i}.
- P_{i} interpolates $f(0)=y_{i}$.

Properties

- Correctness: straightforward
- Privacy: For every set of t players, it holds that all values they see in the protocol are shares of ($t+1$)-out-of-n secret sharing schemes, and therefore all their t shares are uniformly distributed.
- The proof needs to make sure that this property holds even if adversary gets shares of a, b, and $a \cdot b$
- Overhead:
- O(n^{2}) messages for every multiplication gate.
- Communication rounds linear in the depth of the circuit (where only multiplication gates are counted)

