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Advanced Topics in Cryptography

Lecture 3:
• A two-party protocol for a function 
which does not have a short circuit.
• Multi-party protocols.

Benny Pinkas
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Related papers

• Secure computation of medians

– Aggarwal, N. Mishra and B. Pinkas, Secure Computation 
of the K'th-ranked Element, Eurocrypt '2004.

• Secure Computation
– Ronald Cramer and Ivan Damgard, Multiparty 

Computation, an Introduction, Lecture notes. 
http://www.daimi.au.dk/~ivan/mpc_2004.pdf

– Slides on MPC computation, Ivan Damgard, 
http://www.daimi.au.dk/~ivan/MPC2005.pdf.

– M. Ben-Or,  S. Goldwasser, A. Wigderson. Completeness 
theorems for non-cryptographic fault-tolerant distributed 
computation. 20th ACM symposium on Theory of 
Computing (STOC), 1988.
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Secure two-party computation - definition

x y

F(x,y) and nothing else

Input:
Output:

x yAs if…

F(x,y) F(x,y)
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Secure Function Evaluation

• Major Result [Yao]: “Any function that can be 
evaluated using polynomial resources can be securely 
evaluated using polynomial resources”
(under some cryptographic assumption)

• This is shown through a transformation which takes a 
combinatorial circuit computing a function F, and 
constructs a secure protocol computing F() and leaking 
no other information. 

• This protocol is efficient for medium size circuits, but 
what about functions which cannot be represented as 
small circuits? 



5

page 5March 19, 2006 Advanced Topics in Cryptography, Benny Pinkas

kth-ranked element  (e.g. median)

• Inputs:
– Alice: SA         Bob: SB

– Large sets of unique items  (∈D).
• Output:

– x ∈ SA ∪SB s.t. x has k-1 elements smaller than it.
• The rank k 

– Could depend on the size of input datasets. 
– Median:  k = (|SA| + |SB|) / 2

• Motivation:
– Basic statistical analysis of distributed data.
– E.g. histogram of salaries in CS departments  
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Secure computation in the case of large circuit 
representation

• The Problem: 
– The size of a circuit for computing the kth ranked element are at 

least linear in k.
– Generic constructions using circuits [Yao …] have 

communication complexity which is linear in the circuit size, and 
therefore in k.

• However, it is sometimes possible to design specific 
protocols for specific problems, and obtain a much better 
overhead. 

• We will show such a protocol for computing the kth ranked 
element, for the case of semi-honest parties. 
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An (insecure) two-party median protocol

RALA
SA

SB

mA

RBLB mB

LA lies below the median, RB lies above the median. 
|LA| = |RB|

New median is same as original median.
Recursion � Need log n rounds 

(assume each set contains n=2i items) 

mA < mB
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A Secure two-party median protocol

A finds its 
median mA

B finds its
median mB

mA < mB

A deletes 
elements ≤ mA.
B deletes 
elements > mB.

A deletes 
elements > mA.
B deletes 
elements ≤ mB.

YES

NO

Secure comparison
(e.g. a small circuit)
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An example

A B

mA>mB

mA<mB

mA<mB

mA>mB

mA<mB

Median

found!!

8 9 161

16 161 1
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Proof of security

A B

mA>mB

mA<mB

mA<mB

mA>mB

mA<mB

median

mA>mB

mA<mB

mA<mB

mA>mB

mA<mB
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+∞∞∞∞

Arbitrary input size, arbitrary k

SA

SB

k

Now, compute the median of two sets of size k.

Size should be a power of 2.

median of new inputs = kth element of original inputs

2i

+∞∞∞∞

-∞∞∞∞
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Hiding size of inputs

• Can search for kth element without revealing size of 
input sets.

• However, k=n/2 (median) reveals input size.
• Solution: Let S=2i be a bound on input size.

|SA|
S

-∞∞∞∞+∞∞∞∞

-∞∞∞∞+∞∞∞∞

|SB|

Median of new 
datasets is same 

as median of 
original datasets.
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Secure multi-party computation

• Problem statement:
– n players P1, P2,…, Pn

– Player Pi has input xi

– There is a known function f(x1,…,xn)= (y1,…yn)
• Goals:

– Pi should learn yi, and nothing else (except for what can 
be computed from xi and yi)

– This property should also hold for coalitions of corrupt 
parties (e.g., P1,…,Pn/3 should learn nothing but 
x1,…,xn/3,y1,…,yn/3)

– Security should hold even against malicious parties
• Examples…
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More on MPC

• Generality: MPC is extremely general, covers all 
protocol problems.

• Adversaries:
– Semi-honest vs. malicious
– Static (decide in advance which parties to corrupt) vs. 

adaptive (decide on the fly which parties to corrupt)
– Unbounded vs. probabilistic polynomial-time
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Defining security

• It is not enough to list the desired properties that the 
protocol should satisfy
– How can we be sure that we covered all properties?

• Basic security definition: comparison to an ideal 
scenario
– In the ideal scenario there is a trusted party which 

receives x1,…,xn, computes the function  and sends yi to 
Pi.

– The real protocol is secure if its execution reveals no more 
than in the ideal scenario.

• The actual definition is much more complicated, in 
particular if we consider multiple invocations of the 
same protocol.
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More on MPC

• Bounded corruption: We will consider scenarios where 
there is a bound on the number of parties which the 
adversary can corrupt.
– Namely, there is a bound t and it is assumed that the 

adversary corrupts no more than t of the n parties.
• Synchronous network: communication proceeds in 

rounds. All messages sent in during a round are 
received during the same round.

• Adversarial power:
– Information theoretic scenario: adversary cannot listen to 

communication channels, except those to/from parties it 
controls. (This does not make sense in the two-party case)

– Cryptographic scenario: adversary sees all messages.
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What is known

• Information theoretic scenario:
– Semi-honest, adaptive adversary: any function can be 

computed iff adversary controls up to t<n/2 parties. 
– Malicious, adaptive adversary: any function can be 

computed iff adversary controls up to t<n/3 parties.
• If broadcast is available, can withstand up to t<n/2.

• Cryptographic scenario:
– Semi-honest, adaptive, polynomial-time adversary: 

assuming one-way trapdoor permutations exist, any 
function can be computed if t<n.

– Malicious, adaptive, polynomial-time adversary: assuming 
one-way trapdoor permutations exist, any function can be 
computed if t<n/2.
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An MPC protocol for semi-honest parties

• We will show a construction in the unconditional 
security scenario, against semi-honest, adaptive 
adversaries which control up to t<n/2 parties.

• The basic idea:
– Any input value can be shared between the n participants, 

such that no t of them can reconstruct it.
– It is possible to make computations on shared values.

• Initial step:
– Write the function as an arithmetic circuit modulo a prime 

number p.
• Note that arithmetic circuits can be much more compact than 

combinatorial (Boolean) circuits. For example, for computing 
a+b or a⋅b.
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An MPC protocol for semi-honest parties

• The first step of the protocol:
– Each Pi generates a (t+1)-out-of-n sharing of its input xi

• Namely, chooses a random polynomial fi() over Zp
* such that 

fi(0)=xi.
• Any subset of t shares does not leak any information about xi

• t shares enable to reconstruct xi using polynomial 
interpolation 

– Every Pi sends to each Pj (j≠ i) the value fi(j)

• The protocol continues by induction from the input 
wires to the output wires.
– We will show that for every gate, if the parties know 

shares of the input values, they can compute shares of the 
output values. 
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Computation stage

• All parties participate in the computation of every gate
• Addition gate: c= a+b

– The parties must generate a sharing of c. 
– Namely, there should be a polynomial fc() of degree t, 

such that fc() is random except for fc(0)=c
– and each Pi has the share ci=fc(i)

• The protocol:
– Each player Pi already has shares of a and b.
– Namely, shares ai=fa(i) and bi=fb(i) of polynomials fa() and 

fb() of degree t, for which fa(0)=a and fb(0)=b.
– Pi sets ci=ai+bi = fa(i)+fb(i) = fc(i)
– No communication is needed for this computation.
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Computation stage: multiplication gate

• Each player Pi already has shares ai=fa(i) and bi=fb(i).
• Needs to have a share di of d=a⋅b.
• First attempt:

– Pi sets di=ai⋅bi = fd(i).
– Obtains  a share of fa()⋅ fb()
– Indeed, fd(0) = d = a⋅b.
– But fd() is of degree 2t and not t.

• If we do this twice, the degree becomes 4t>n…
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Computing multiplication gates

• Pi sets di=ai⋅bi = fd(i).
• fd(i) is of degree 2t < n.
• We know that there are (Lagrange) coefficients r1,..,rn

such that d=fd(0)=a⋅b= r1d1+…+rndn = r1fd(1)+…+rnfd(n).

• Each Pi creates a random polynomial gi of degree t 
such that gi(0)=di .

• Consider g(x)=∑i=1
n ri ⋅ gi(x)

– This a polynomial of degree t. 
– g(0) = ∑i=1

n ri ⋅ gi(0) = ∑i=1
n ri ⋅ di = d.

• Now, if only we could provide each Pi with g(i)…
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Computing multiplication gates

• Each Pi creates a random polynomial gi of degree t 
such that gi(0)=di

• We need the parties to share g(x)=∑i=1
n ri ⋅ gi(x)

• Pi sends to every Pj the value gi(j)
• Every Pj receives g1(j),…,gn(j), and computes                   

gj = ∑i=1
n ri⋅gi(j) = g(j)

• This is the desired share of a⋅ b
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Opening the outputs

• At the end of the circuit, for each value yi it holds that 
the parties hold shares of a polynomial f(x) of degree t 
such that f(0)=yi.

• Each party Pj sends f(j) to Pi.
• Pi interpolates f(0)=yi.
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Properties

• Correctness: straightforward
• Privacy: For every set of t players, it holds that all 

values they see in the protocol are shares of (t+1)-out-
of-n secret sharing schemes, and therefore all their t 
shares are uniformly distributed.
– The proof needs to make sure that this property holds 

even if adversary gets shares of a,b, and a⋅b

• Overhead:
– O(n2) messages for every multiplication gate.
– Communication rounds linear in the depth of the circuit 

(where only multiplication gates are counted)


