Advanced Topics in Cryptography

Lecture 2: oblivious transfer, twoparty secure computation

Benny Pinkas

1-out-of-N OT

- A generalization of 1-out-of-2 OT:
- Sender has N inputs, $\mathrm{x}_{0}, \ldots \mathrm{x}_{\mathrm{N}}$.
- Receiver has an input $j \in\{1,2, \ldots, N\}$.
- Output:
- Receiver learns x_{j} and nothing else.
- Sender learns nothing about j.
- We would like to construct 1-out-of-N OT, or reductions from 1-out-of-N OT to 1-out-of-2 OT.
- It was shown that any such reduction which provides unconditional security requires at least N -1 OTs.
- Since OT has a high computational overhead, we would like to do better than that.

Related papers

- 1-out-of-N oblivious transfer
- M. Naor and B. Pinkas Computationally secure Obivious Transfer
- Secure Computation
- A. Yao

How to Generate and Exchange Secrets.
In 27th FOCS, pages 162-167, 1986 .
(the first pacs, pages 162-167, 1986.

- D. Malkhi, N. Nisan, B. Pinkas and Y. Sella,
D. Malkhi, N. Nisan, B. Pinkas and Y. Sella,
Fairplay -A Secure Two-Party Computation System, Proceedings of Usenix
Security '2004. (efficient implementation of two-party secure computation)
- Y. Lindell and B. Pinkas

A Proof of Yao's Protocol for Secure Two-Party Computation, full proof of security)

Construction 1: A recursive protocol for 1-out-of-N OT

- The reduction uses a pseudo-random function $F_{k}()$.
- It holds that if k is chosen at random and kept secret, no adversary can distinguish between ($\mathrm{x}, \mathrm{F}_{\mathrm{k}}(\mathrm{x})$) and a random value, for every x.
- The protocol reduces 1-out-of-m OT to 1-out-of- \sqrt{m} OT. This can done recursively.

A recursive protocol for 1 -out-of-N OT

Sender's original input:

A recursive protocol for 1 -out-of-N OT

A recursive protocol for 1 -out-of-N OT

Construction 2: a reduction to 1-out-of-2 OT

- Assume $\mathrm{N}=2^{\mathrm{n}}$. The receiver's input is $j=j_{n}, \ldots, j_{1}$.
- Preprocessing: the sender prepares $2 n$ keys
- $\left(k_{1,0}, k_{1,1}\right),\left(k_{2,0}, k_{2,1}\right), \ldots,\left(k_{n, 0}, k_{n, 1}\right)$.
- and encryptions $Y_{i}=X_{i} \oplus F_{K\{1, i, 1\}}(i) \oplus \ldots \oplus F_{K\{1, i n\}}(i)$
- (namely, X_{i} is encrypted using the keys corresponding to the bits of i).
- For each $1 \leq \mathrm{s} \leq \mathrm{n}$, the parties run a 1 -out-of-2 OT:
- The sender's input is ($k_{s, 0}, k_{s, 1}$).
- The receiver's input is j_{s}.
- The sender sends Y_{1}, \ldots, Y_{n} to the receiver.
- The receiver reconstructs x_{i}.
- Why can't we use $Y_{i}=X_{i} \oplus K_{1, i 1}(i) \oplus \ldots \oplus K_{1, i n}(i)$?

Analysis

- Overhead:
- $N=\log N$ invocations of 1 -out-of-2 OT (this is the bulk of the overhead).
- The preprocessing stage requires Nlog N invocations of the pseudo-random function $F()$.
- Receiver privacy (hand-waving):
- Since the 1-out-of-2 OTs do not leak information about the receiver's input.
- Sender privacy:
- It can be shown that if the receiver learns about more than a single item, then either the 1 -out-of-2 OT is not secure, or $F()$ is not pseudo-random.

Applications

- Database queries
- Checking the size of a search engine index??

Does the trusted party scenario make sense?

- We cannot hope for more privacy
- Does the trusted party scenario make sense?
- Are the parties motivated to submit their true inputs?
- Can they tolerate the disclosure of $F(x, y)$?
- If so, we can implement the scenario without a trusted party.

Fairness, aka early termination

- Suppose both parties (A and B) need to learn the output
- Assume that the last message in the protocol goes from A to B
- A malicious A does not send that message
$-\Rightarrow B$ does not learn output
- There is no perfect solution to this problem. However, this corrupt behavior is detectable.

Definition

- For every A in the real world, there is an A^{\prime} in the ideal world, s.t. whatever A can compute in the real world. A' can compute in the ideal world
- The same for B. Need not worry about the case the both are corrupt
- Semi-honest case: (A' behaves according to the protocol.)
- It is sufficient to require that A^{\prime} is able to simulate the interaction from the output alone.

Secure two-party computation - definition

As if...

Examples of Simple Privacy Preserving Primitives

- Reasonably efficient solutions satisfying the definition above.
- Is $X>Y$? Is $X=Y$?
- What is $X \cap Y$? What is median of $X \cup Y$?
- Auctions (negotiations). Many parties, private bids. Compute the winning bidder and the sale price, but nothing else.
- Add privacy to existing data mining algs.

Secure two-party computation of general functions [YaO]

- First, represent the function F as a Boolean circuit C
- It's always possible
- Sometimes it's easy (additions, comparisons)
- Sometimes the result is inefficient (e.g. for indirect addressing)

Garbling the circuit

- Bob (aka "the constructor") constructs the circuit, and then garbles it.

$\mathrm{W}_{\mathrm{k}}{ }^{0} \equiv 0$ on wire k $\mathrm{W}_{\mathrm{k}}{ }^{1} \equiv 1$ on wire k
(Alice will learn one string per wire, but not which bit it corresponds to.)

Basic ideas

- A simple circuit is evaluated by
- setting values to its input gates
- For each gate, computing the value of the outgoing wire as a function of the wires going into the gate.
- Secure computation:
- No party should learn the values of any wires, except for the output wires of the circuit
- Yao's protocol
- A compiler which takes a circuit and transforms it to a circuit which hides all information but the final output.

Gate tables

- For every gate, every combination of input values is used as a key for encrypting the corresponding output
- Assume G=AND. Bob constructs a table:
- Encryption of $w_{k}{ }^{0}$ using keys $w_{i}{ }^{0}, w_{j}{ }^{0}$
- Encryption of $w_{k}{ }^{0}$ using keys $w_{i}{ }^{0}, w_{j}{ }^{1}$
- Encryption of $w_{k}{ }^{0}$ using keys $w_{i}{ }^{1}, w_{j}{ }^{0}$
- Encryption of $w_{k}{ }^{1}$ using keys $w_{i}{ }^{1}, w_{j}{ }^{1}$
- ...and permutes the order of the entries
- Result: given $w_{i}{ }^{\mathrm{x}}, \mathrm{w}_{\mathrm{j}}{ }^{\mathrm{y}}$, can compute $\mathrm{w}_{\mathrm{k}} \mathrm{G}(\mathrm{x}, \mathrm{y})$ - (encryption can be done using a prf)

The encryption scheme being used

- The encryption scheme must be secure even if many messages are encrypted with the same key
- Therefore, a one-time pad is not a good choice.
- Motivation: a wire might be used in many gates, and the corresponding garbled value is used as an encryption key in each of them.
- It must hold that a random string happens to be a correct ciphertext only with negligible probability.
- So that when Alice tries to decrypt the entries in the table, she will only be successful for on entry.

Secure computation

- Bob sends to Alice

- Tables encoding each circuit gate.
- Garbled values (w's) of his input values.
- If Alice gets garbled values (w's) of her input values, she can compute the output of the circuit, and nothing else.
- Why can't the Bon provide Alice with the keys corresponding to both 0 and 1 for her input wires?

Secure computation

- Bob sends the table of gate G to Alice
- Given, e.g., $w_{i}{ }^{0}, w_{j}{ }^{1}$, Alice computes $w_{k}{ }^{0}$, but doesn't know the actual values of the wires.
- Alice cannot decrypt the entries of input pairs different from $(0,1)$
- For the wires of circuit output:
- Bob does not define "garbled" values for the output wires, but rather encrypts a $0 / 1$ value.

Alice's input

- For every wire i of Alice's input:
- The parties run an OT protocol
- Alice's input is her input bit (s).
- Bob's input is w_{i}^{0}, w_{i}^{1}
- Alice learns $w_{i}{ }^{\text {s }}$
- The OTs for all input wires can be run in parallel.
- Afterwards Alice can compute the circuit by herself.

Secure computation - the big picture (simplified)

- Represent the function as a circuit C
- Bob sends to Alice $4|C|$ encryptions (e.g., 50|C| Bytes).
- Alice performs an OT for every input bit. (Can do, e.g. 100 OTs per sec.)
- Relatively low overhead:
- Constant number of (~ 1) rounds of communication.
- Public key overhead depends on the size of Alice's input
- Communication depends on the size of the circuit
- Efficient for medium size circuits!

Example

- Comparing two N bit numbers
- What's the overhead?

Secure computation: security (semi-honest case)

- In the protocol:
- Bob sends tables to Alice
- The parties run OTs where Alice learns garbled values
- Alice computes the output of the circuit
- A corrupt Bob: sees the execution of the OTs. If OTs are secure learns nothing about Alice's input.
- A corrupt Alice:
- Since OTs are secure, learns one garbled value per inptu wire.
- In every gate, if she knows only one garbled value of every input wire, she cannot decrypt more than a single value of output wire.
- A simulation argument appears at "A Proof of Yao's Protocol for Secure Two-Party Computation"

Applications

- Two parties. Two large data sets.
- Max?
- Mean?
- Median?
- Intersection?

Conclusions

- If the circuit is not too large:
- Efficient secure two-party computation.
- Efficient multi-party computation with two semi-trusted parties.
- An "open" question: >2 semi-trusted parties.
- If the circuit is large: we currently need ad-hoc solutions.

