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An announcement

• Seminar talk, next Wednesday:
Hovav Shacham

New paradigms in signature schemes 
• Abstract:

– Groups featuring a computable bilinear map are 
particularly well suited for signature-related primitives.

– For some signature variants the only construction known 
is based on bilinear maps.

– Bilinear-map-based constructions are simpler, more 
efficient, and yield shorter signatures.

– The talk describes three constructions and their 
applications: short signatures, aggregate signatures, 
group signatures. 
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Related papers

– Chosen-Ciphertext Security from Identity-Based 
Encryption. D. Boneh, R. Canetti, S. Halevi, and J. Katz.

– http://crypto.stanford.edu/~dabo/papers/ccaibejour.pdf
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Chosen-ciphertext security

• Chosen-plaintext security (CPA)
– Semantic security
– Indistinguishability

• CPA does not protect against active attacks
• Chosen-ciphertext security (CCA)

– The adversary can get decryptions of ciphertexts of his 
choice

– This is the de facto required level of security today.
– Non-adaptive CCA: adversary can ask decryption queries 

before receiving its challenge
– Adaptive CCA: adversary can ask decryption queries even 

after receiving its challenge
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Security against chosen-ciphertext attacks

• The game:
– We show the public key to the adversary
– Adversary can ask to receive decryptions of messages of 

his choice
– Adversary chooses two messages m0,m1 (possibly based 

on the answers he previously received)
– Adversary is given an encryption E(mb), where b∈R{0,1}
– Adversary can issue further  decryption queries, but not 

E(mb)     (this is the difference between adaptive and non-
adaptive attacks)

– Adversary guesses b

• Adversary succeeds if its probability of guessing b 
correctly is not negligibly close to ½
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CCA-secure encryption schemes

• Constructions based on the random oracle model 
(OAEP and its variants)

• Generic constructions
– Based on a CPA-secure encryption scheme and non-

interactive zero-knowledge proofs (NIZK).
– Show feasibility.
– Not very practical. NIZK proofs are based on reductions to 

NP-complete problems.
• Algebraic constructions

– Cramer-Shoup.
– Based on the DDH and similar problems.
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New construction

• A CCA-secure public encryption scheme
– Based on a generic assumption: the existence of a CPA-

secure identity based encryption scheme.
– Specific instantiations, based on number theoretic 

assumptions, can be almost as practical as Cramer-
Shoup.

– Unlike previous CCA-secure schemes, does not use a 
“proof of well formedness”.
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Identity based encryption (IBE)

• A public-key encryption scheme where the key can be 
an arbitrary string

• Key generation center (KGC)
– Holds the master private key
– Generates public system parameters

• Key derivation: The KGC can provide each user with 
the private key corresponding to his/her name.
– The private key is a function of the name (or an arbitrary 

string) and the master private key
• Encryption: everyone can encrypt messages to Alice. 

The ciphertext is a function of the plaintext, Alice’s 
name, and the public parameters.

• Decryption: Alice uses her private key and the system 
parameters to decrypt messages sent to her
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IBE – security definitions

• Main challenge: adversary can get private keys of some 
identities, while attacking a different identity

• Adaptively-chosen-key semantic (CPA) security
1. The adversary obtains keys for a polynomial number of IDs, 

which it chooses adaptively
2. It outputs a different ID*, and two messages m0,m1

3. It receives E(mb,ID*),   for b∈R{0,1}
4. The adversary tries to guess b

• Selective-ID IBE
– A weaker notion of IBE
– The adversary must select ID* before receiving the IDs in 

Step 1 (i.e., ID* is not a function of Step 1).
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Identity based encryption

• Master Key Generation:
– MKG(1k) → (PKmaster, SKmaster)

• Key Generation:
– G(ID,SKmaster) → SKID

• Encryption:
– E(m,ID,PKmaster) → c

• Decryption
– D(c,ID,SKID) → m such that  c = E(m,ID,PKmaster) 
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The construction

• Based on 
– An IBE scheme with chosen-plaintext selective-ID security 

(even weaker than full pledged IBE)
– A one-time signature scheme

• Each key is used only for a single signature

• Strong unforgeability: the adversary should not forge a new 
signature even on a previously signed message

• Key generation:
– The user runs the master key generation algorithm of the 

IBE scheme, MKG(1k) → (PKmaster, SKmaster). Its public key 
is PKmaster.
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The construction

• Encryption: to encrypt m,
– The sender generates fresh signing and verification keys 

for the signature scheme, sk, vk.
– The sender encrypts m with respect to the identify vk. 

E(m,vk,PKmaster) → c
– It signs the resulting IBE ciphertext signsk(c)→ σ.
– The ciphertext is 〈vk,c,σ〉.

• Decryption of 〈vk,c,σ〉:
– The receiver uses vk to verify that σ is a signature of c. If 

not, it aborts.
– The receiver computes the IBE private key G(vk,SKmaster) 
→ SKvk.

– It then computes the decryption D(c,vk,SKvk) → m.
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Security:

• Warmup: security against non-adaptive CCA attacks
– Instead of using signatures, the sender

• Chooses a random string r
• Uses the IBE scheme to encrypt m under the identity r, 

resulting in a ciphertext c.
• Sends 〈r,c〉 to the receiver.

– The receiver decrypts c using the secret key of ID r.
• Security of this variant:

– The adversary can only do decryption queries before 
receiving the challenge ciphertext. That is, before learning 
the value r of the ciphertext it has to break.

– Therefore, it uses different r values in its queries.
– The IBE scheme is secure even if the adversary learns the 

decryption keys of many IDs r’, different than r.
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Security - intuition

• Say that a ciphertext 〈vk,c,σ〉 is valid if the verification 
key vk verifies that σ is a signature of c. 

• The adversary is given a challenge ciphertext 
〈vk*,c*,σ*〉

• Suppose that the adversary submits a ciphertext 
〈vk,c,σ〉 ≠ 〈vk*,c*,σ*〉 for decryption
– If vk=vk*, then 〈vk,c,σ〉 cannot be valid (this would have 

meant that the adversary generated a new signature pair 
(c,σ), even though it does not the signature key).

– Therefore vk≠vk*. The selective-ID security of the IBE 
scheme implies that a decryption of c (and even the 
decryption key for the identity vk), do not compromise 
encryptions done with the id vk*.



15

page 15June 4, 2006 Advanced Topics in Cryptography, Benny Pinkas

Security proof

• THM: if the IBE scheme is selective-ID secure against 
chosen-plaintext attacks, and the signature has strong 
one-time security, then the system has CCA security 
against adaptive attacks.

• Proof:
– Assume that A attacks the system in an adaptive CCA 

attack, and is given the challenge ciphertext 〈vk*,c*,σ*〉.
– Let FORGE denote the event that A submits a valid 

ciphertext 〈vk*,c,σ〉 to the decryption oracle (c,σ ≠ c*,σ*).
– Claim 1: The probability of FORGE is negligible.
– Claim 2: | Pr(Success & ¬¬¬¬FORGE) +0.5Pr(FORGE) -0.5| 

is negligible.
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Why this proves the theorem

• |Pr(Success) – 0.5)|

• ≤ | Pr(Success & FORGE) – 0.5Pr(FORGE) | + 
|Pr(Success & ¬¬¬¬FORGE) + 0.5Pr(FORGE) – 0.5 | 

• ≤ Pr(FORGE) +                                                             
| Pr(Success & ¬¬¬¬FORGE) + 0.5Pr(FORGE) – 0.5 | 
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Proof of Claim 1

• The probability of FORGE is negligible
• Proof:

– We construct a forgery algorithm F for the signature which 
scheme can forge signatures with probability Pr(FORGE).

– F has access to a signature algorithm, which is willing to 
sign a single message.

– F is given a verification key vk*. It generates the public key 
of the IBE system, and provides it to the adversary A.

– F can answer any decryption query of A.
– When A provides F with m0,m1, F chooses b∈R{0,1}, 

encrypts mb with the ID vk*, and asks for a signature σ∗ on 
this ciphertext c*.  It returns 〈vk*,c*,σ∗〉 as the challenge.

– If A submits a ciphertext 〈vk*,c,σ〉, F obtained a forgery.
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Proof of Claim 2:
| Pr(Success & ¬¬¬¬FORGE) +0.5Pr(FORGE) -0.5| is negligible

• We construct A’ which attacks the IBE scheme:
– A’ generates (vk*,sk*) and sets the target ID to vk*. A’ is 

given a master public key PK (to attack) and sends it to A.
– A makes a decryption query 〈vk,c,σ〉.

• If vk=vk*, and the signature σ is good, A’ aborts.
• If the signature σ is incorrect, A’ returns “fail”.
• If vk≠ vk*, and the signature σ is good, A’ asks for SKvk, and 

uses it to decrypt c and return the answer to A.

– A sends m0,m1 to A’. A’ sends them to its decryption oracle, 
with the ID vk*. It receives an encryption c* of mb, signs it 
and sends the answer 〈vk*,c*,σ∗〉 to A.

– A’ continues as before. When A outputs b’, A’ outputs b=b’.
• A’ is a perfect simulation for A, except in case of forgery:

– |PrA’(Success)-0.5| = |PrA(Success & ¬¬¬¬FORGE)+0.5PrA(FORGE)-0.5|
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One time signatures

• Signature scheme for a single message

• Example: to sign a single bit
– Private signature key: x0, x1 ∈ {0,1}k

– Public verification key: h0=h(x0), h1=h(x1), where h is one-
way

– Signature (of bit b): xb

– Verification: check that h(xb) = hb

• Very efficient
• Given signature of b, adversary cannot fake a signature 

of 1-b
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One time signatures

• Signing message of size n:
– Private key: { xi,0, xi,1 }i=1..n

– Public key: { h(xi,0), h(xi,1) }i=1..n

– Signature of b1,…,bn:  x1,b1,…,xn,bn

• Alternatively,
– Private key: { xi}i=1..n+log(n)

– Public key: { h(xi)}i=1..n+log(n)

– Signature of b1,…,bn:  xj for all bj=0. Let c1,…,clog(n) be the Hamming 
weight of b. Open also xn+j for all cj=0. 

– Very efficient
• Can use a full signature scheme to sign public key of one-time 

scheme (offline).
• When it is required to sign m, signing can be done very efficiently.

– What happens if two different messages are signed with the same 
public key?
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A construction of selective-ID IBE with no random 
oracle assumptions
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One-time signatures


