Advanced Topics in Cryptography

Lecture 11: Chosen-ciphertext security from identity based encryption.

Benny Pinkas

June 4, 2006

Advanced Topics in Cryptography, Benny Pinkas

An announcement

 Seminar talk, next Wednesday: Hovav Shacham

New paradigms in signature schemes

- Abstract:
 - Groups featuring a computable bilinear map are particularly well suited for signature-related primitives.
 - For some signature variants the only construction known is based on bilinear maps.
 - Bilinear-map-based constructions are simpler, more efficient, and yield shorter signatures.
 - The talk describes three constructions and their applications: short signatures, aggregate signatures, group signatures.

June 4, 2006

Advanced Topics in Cryptography, Benny Pinkas

Related papers

- Chosen-Ciphertext Security from Identity-Based
 Encryption. D. Boneh, R. Canetti, S. Halevi, and J. Katz.
- http://crypto.stanford.edu/~dabo/papers/ccaibejour.pdf

June 4, 2006

Advanced Topics in Cryptography, Benny Pinkas

Chosen-ciphertext security

- Chosen-plaintext security (CPA)
 - Semantic security
 - Indistinguishability
- CPA does not protect against active attacks
- Chosen-ciphertext security (CCA)
 - The adversary can get decryptions of ciphertexts of his choice
 - This is the *de facto* required level of security today.
 - Non-adaptive CCA: adversary can ask decryption queries before receiving its challenge
 - Adaptive CCA: adversary can ask decryption queries even after receiving its challenge

June 4. 2006

Security against chosen-ciphertext attacks

- The game:
 - We show the public key to the adversary
 - Adversary can ask to receive decryptions of messages of his choice
 - Adversary chooses two messages m₀,m₁ (possibly based on the answers he previously received)
 - Adversary is given an encryption $E(m_b)$, where $b \in \mathbb{R}\{0,1\}$
 - Adversary can issue further decryption queries, but not E(m_b) (this is the difference between adaptive and nonadaptive attacks)
 - Adversary guesses b
- Adversary succeeds if its probability of guessing b correctly is not negligibly close to ½

CCA-secure encryption schemes

- Constructions based on the random oracle model (OAEP and its variants)
- Generic constructions
 - Based on a CPA-secure encryption scheme and noninteractive zero-knowledge proofs (NIZK).
 - Show feasibility.
 - Not very practical. NIZK proofs are based on reductions to NP-complete problems.
- Algebraic constructions
 - Cramer-Shoup.
 - Based on the DDH and similar problems.

June 4. 2006

Advanced Topics in Cryptography, Benny Pinkas

New construction

- A CCA-secure public encryption scheme
 - Based on a generic assumption: the existence of a CPAsecure identity based encryption scheme.
 - Specific instantiations, based on number theoretic assumptions, can be almost as practical as Cramer-Shoup.
 - Unlike previous CCA-secure schemes, does not use a "proof of well formedness".

Identity based encryption (IBE)

- A public-key encryption scheme where the key can be an arbitrary string
- Key generation center (KGC)
 - Holds the master private key
 - Generates public system parameters
- Key derivation: The KGC can provide each user with the private key corresponding to his/her name.
 - The private key is a function of the name (or an arbitrary string) and the master private key
- Encryption: everyone can encrypt messages to Alice. The ciphertext is a function of the plaintext, Alice's name, and the public parameters.
- Decryption: Alice uses her private key and the system parameters to decrypt messages sent to her

IBE – security definitions

- Main challenge: adversary can get private keys of some identities, while attacking a different identity
- Adaptively-chosen-key semantic (CPA) security
 - The adversary obtains keys for a polynomial number of IDs, which it chooses adaptively
 - It outputs a different ID*, and two messages m₀,m₁
 - 3. It receives $E(m_b, ID^*)$, for $b \in \{0,1\}$
 - 4. The adversary tries to guess b
- Selective-ID IBE
 - A weaker notion of IBE
 - The adversary must select ID* before receiving the IDs in Step 1 (i.e., ID* is not a function of Step 1).

June 4, 2006

Advanced Topics in Cryptography, Benny Pinkas

Identity based encryption

- Master Key Generation:
 - $MKG(1^k) \rightarrow (PK_{master}, SK_{master})$
- Key Generation:
 - $G(ID,SK_{master}) \rightarrow SK_{ID}$
- Encryption:
 - E(m,ID,PK_{master}) → c
- Decryption
 - $-D(c,ID,SK_{ID}) \rightarrow m$ such that $c = E(m,ID,PK_{master})$

June 4, 2006

Advanced Topics in Cryptography, Benny Pinkas

The construction

- Based on
 - An IBE scheme with chosen-plaintext selective-ID security (even weaker than full pledged IBE)
 - A one-time signature scheme
 - Each key is used only for a single signature
 - Strong unforgeability: the adversary should not forge a new signature even on a previously signed message
- Key generation:
 - The user runs the master key generation algorithm of the IBE scheme, $MKG(1^k) \rightarrow (PK_{master}, SK_{master})$. Its public key is PK_{master} .

The construction

- Encryption: to encrypt m,
 - The sender generates fresh signing and verification keys for the signature scheme, *sk*, *vk*.
 - The sender encrypts m with respect to the identify vk. $E(m,vk,PK_{master}) \rightarrow c$
 - It signs the resulting IBE ciphertext $sign_{sk}(c) \rightarrow \sigma$.
 - The ciphertext is $\langle vk, c, \sigma \rangle$.
- Decryption of $\langle vk, c, \sigma \rangle$:
 - The receiver uses vk to verify that σ is a signature of c. If not, it aborts.
 - The receiver computes the IBE private key G(vk,SK_{master})
 → SK_{vk}.
 - It then computes the decryption $D(c, vk, SK_{vk}) \rightarrow m$.

June 4, 2006

Advanced Topics in Cryptography, Benny Pinkas

Security:

- Warmup: security against *non-adaptive* CCA attacks
 - Instead of using signatures, the sender
 - Chooses a random string r
 - Uses the IBE scheme to encrypt m under the identity r, resulting in a ciphertext c.
 - Sends (*r*,*c*) to the receiver.
 - The receiver decrypts c using the secret key of ID r.
- Security of this variant:
 - The adversary can only do decryption queries before receiving the challenge ciphertext. That is, before learning the value r of the ciphertext it has to break.
 - Therefore, it uses different *r* values in its queries.
 - The IBE scheme is secure even if the adversary learns the decryption keys of many IDs r', different than r.

Security - intuition

- Say that a ciphertext $\langle vk, c, \sigma \rangle$ is valid if the verification key vk verifies that σ is a signature of c.
- The adversary is given a challenge ciphertext
 ⟨vk*,c*,σ*⟩
- Suppose that the adversary submits a ciphertext $\langle vk, c, \sigma \rangle \neq \langle vk^*, c^*, \sigma^* \rangle$ for decryption
 - If vk=vk*, then $\langle vk,c,\sigma \rangle$ cannot be valid (this would have meant that the adversary generated a new signature pair (c,σ) , even though it does not the signature key).
 - Therefore vk≠vk*. The selective-ID security of the IBE scheme implies that a decryption of c (and even the decryption key for the identity vk), do not compromise encryptions done with the id vk*.

Security proof

• THM: if the IBE scheme is selective-ID secure against chosen-plaintext attacks, and the signature has strong one-time security, then the system has CCA security against adaptive attacks.

• Proof:

- Assume that A attacks the system in an adaptive CCA attack, and is given the challenge ciphertext $\langle vk^*,c^*,\sigma^* \rangle$.
- Let FORGE denote the event that A submits a valid ciphertext $\langle vk^*, c, \sigma \rangle$ to the decryption oracle $(c, \sigma \neq c^*, \sigma^*)$.
- Claim 1: The probability of FORGE is negligible.
- Claim 2: | Pr(Success & ¬FORGE) +0.5Pr(FORGE) -0.5| is negligible.

Why this proves the theorem

- |Pr(Success) 0.5)|
- ≤ | Pr(Success & FORGE) 0.5Pr(FORGE) | +
 |Pr(Success & ¬FORGE) + 0.5Pr(FORGE) 0.5 |
- ≤ Pr(FORGE) +
 | Pr(Success & ¬FORGE) + 0.5Pr(FORGE) 0.5 |

June 4, 2006

Advanced Topics in Cryptography, Benny Pinkas

Proof of Claim 1

- The probability of FORGE is negligible
- Proof:
 - We construct a forgery algorithm F for the signature which scheme can forge signatures with probability Pr(FORGE).
 - F has access to a signature algorithm, which is willing to sign a single message.
 - F is given a verification key vk*. It generates the public key of the IBE system, and provides it to the adversary A.
 - F can answer any decryption query of A.
 - When A provides F with m_0, m_1 , F chooses $b \in_R \{0,1\}$, encrypts m_b with the ID vk*, and asks for a signature $\sigma *$ on this ciphertext c*. It returns $\langle vk^*, c^*, \sigma * \rangle$ as the challenge.
 - If A submits a ciphertext $\langle vk^*, c, \sigma \rangle$, F obtained a forgery.

June 4, 2006

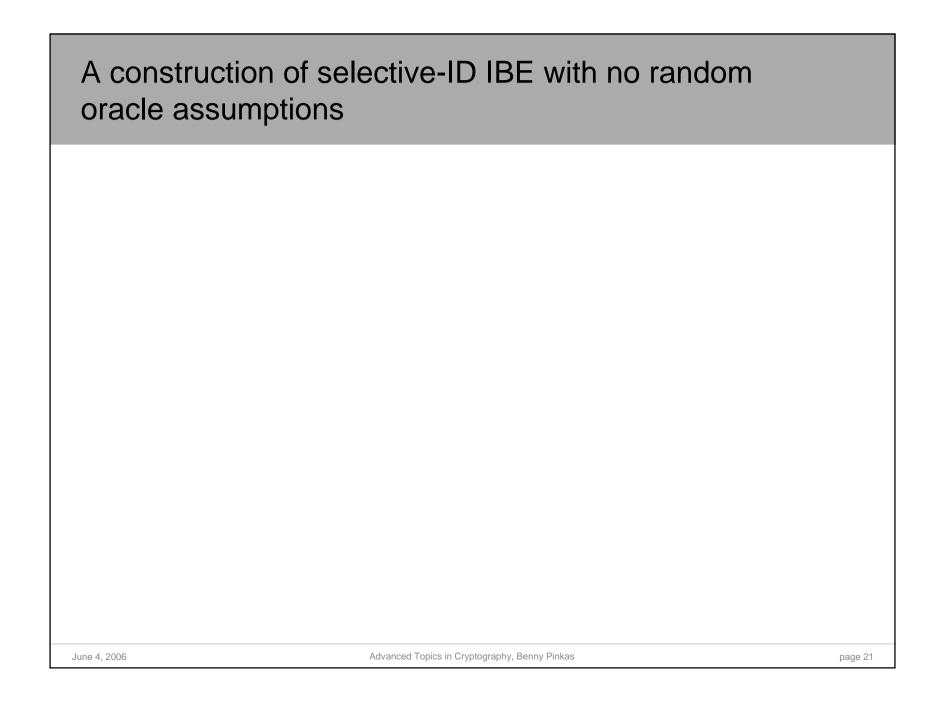
Advanced Topics in Cryptography, Benny Pinkas

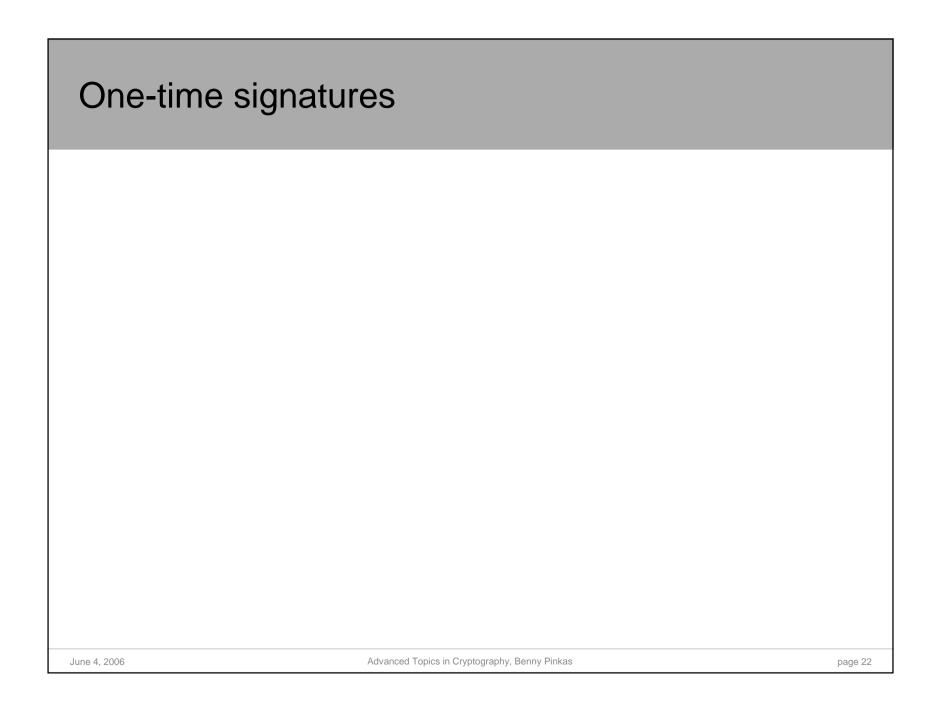
Proof of Claim 2:

Pr(Success & ¬FORGE) +0.5Pr(FORGE) -0.5| is negligible

- We construct A' which attacks the IBE scheme:
 - A' generates (vk*,sk*) and sets the target ID to vk*. A' is given a master public key PK (to attack) and sends it to A.
 - A makes a decryption query $\langle vk, c, \sigma \rangle$.
 - If $vk=vk^*$, and the signature σ is good, A' aborts.
 - If the signature σ is incorrect, A' returns "fail".
 - If $vk \neq vk^*$, and the signature σ is good, A' asks for SK_{vk} , and uses it to decrypt c and return the answer to A.
 - A sends m_0 , m_1 to A'. A' sends them to its decryption oracle, with the ID vk^* . It receives an encryption c* of m_b , signs it and sends the answer $\langle vk^*, c^*, \sigma^* \rangle$ to A.
 - A' continues as before. When A outputs b', A' outputs b=b'.
- A' is a perfect simulation for A, except in case of forgery:
 - $|Pr_{A'}(Success)-0.5| = |Pr_{A}(Success \& \neg FORGE)+0.5Pr_{A}(FORGE)-0.5|$

June 4, 2006


Advanced Topics in Cryptography, Benny Pinkas


One time signatures

- Signature scheme for a single message
- Example: to sign a single bit
 - Private signature key: $x_0, x_1 \in \{0, 1\}^k$
 - Public verification key: $h_0 = h(x_0)$, $h_1 = h(x_1)$, where h is oneway
 - Signature (of bit b): x_b
 - Verification: check that $h(x_b) = h_b$
- Very efficient
- Given signature of b, adversary cannot fake a signature of 1-b

One time signatures

- Signing message of size n:
 - Private key: $\{x_{i,0}, x_{i,1}\}_{i=1..n}$
 - Public key: $\{h(x_{i,0}), h(x_{i,1})\}_{i=1..n}$
 - Signature of b_1, \dots, b_n : $x_{1,b1}, \dots, x_{n,bn}$
- Alternatively,
 - Private key: $\{x_i\}_{i=1..n+log(n)}$
 - Public key: $\{h(x_i)\}_{i=1..n+log(n)}$
 - Signature of b_1, \dots, b_n : x_j for all $b_j = 0$. Let $c_1, \dots, c_{\log(n)}$ be the Hamming weight of b. Open also x_{n+j} for all $c_j = 0$.
 - Very efficient
 - Can use a full signature scheme to sign public key of one-time scheme (offline).
 - When it is required to sign m, signing can be done very efficiently.
 - What happens if two different messages are signed with the same public key?

