Advanced Topics in Cryptography

Lecture 9: Pairing based cryptography, Identity based encryption.

Benny Pinkas

Related papers

- Lecture notes from MIT http://crypto.csail.mit.edu/classes/6.876/lecture-notes.html
- Clifford Cocks, An Identity Based Encryption Scheme based on Quadratic Residues. http://www.cesg.gov.uk/site/ast/idpkc/media/ciren.pdf

Bilinear maps: motivation

- Bilinear maps are the tool of pairing-based cryptography
- First major application: an efficient identity-based encryption scheme (2001).
- Manu more applications.
-What can they do?
- Establish relationships between cryptographic groups
- Make DDH easy in one of the groups
- Enable to solve the CDH once

Bilinear Maps

- Let $\mathrm{G}, \mathrm{G}_{\mathrm{t}}$ be cyclic groups of the same order
- A bilinear map from $G \times G$ to G_{t} is a function $e: G \times G \rightarrow$ G_{t}, such that
- $\forall u, v \in G, a, b \in Z$,

$$
e\left(u^{\mathrm{a}}, \mathrm{v}^{\mathrm{b}}\right)=(\mathrm{e}(u, v))^{\mathrm{ab}}
$$

- This is true if and only if $\forall \mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{v}_{1}, \mathrm{v}_{2} \in \mathrm{G}$
$-e\left(u_{1}+u_{2}, v_{1}\right)=e\left(u_{1}, v_{1}\right) \cdot e\left(u_{2}, v_{1}\right)$
$-e\left(u_{1}, v_{1}+v_{2}\right)=e\left(u_{1}, v_{1}\right) \cdot e\left(u_{1}, v_{2}\right)$
- A bilinear map is called a pairing since it associates pairs of elements from G with an element in G_{t}.

Admissible bilinear maps

- A bilinear map can be degenerate: map everything to 1 , and therefore $e\left(u^{a}, v^{b}\right)=1=(e(u, v))^{a b}=1^{a b}$
- Let g, g ' be generators of G .
- A bilinear map is called admissible if $e\left(g, g^{\prime}\right)$ generates G_{t}, and e is efficiently computable.
- These are the only maps we care about.
- G and G_{t} have the same order $G(g, 1)$ generates G_{t}.
- If $G=G_{t}$ then we get a very powerful primitive.
- But it's unknown how to construct such a pairing

Another notation

- It is common to use an additive notation for the group G. Namely,
- The operation in G is +
- 1 is a generator of G
- The discrete log problem means that given ($\mathrm{g}, \mathrm{a} \cdot \mathrm{g}$) it is hard to find a.
- We will use the multiplicative notation

Implications to the Discrete Log problem

- The discrete log problem in G is no harder than the discrete log problem in G_{t}.
- Our input is $\left(\mathrm{g}, \mathrm{g}^{\mathrm{a}}\right)$ from G , for a random a , and we need to find a.
- Suppose that it is easy to compute discrete logarithms in G_{t}. We work as follows:
$-g_{\mathrm{t}}=\mathrm{e}(\mathrm{g}, \mathrm{g})$
$-\mathrm{p}=\mathrm{e}\left(\mathrm{g}, \mathrm{g}^{\mathrm{a}}\right)$
- Find the discrete $\log \left(\right.$ in $\left.G_{t}\right)$ of p to the base g_{t}
- This works since $e\left(g, g^{a}\right)=e(g, g)^{a}$

Implications to the Decisional Diffie-Hellman problem (DDH)

- The DDH problem in G is easy.
- Our task is to distinguish between $\left\langle\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{ab}}\right\rangle$, and $\left\langle\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{c}}\right\rangle$, for random $\mathrm{a}, \mathrm{b}, \mathrm{c}$.
- The distinguisher is given $\langle P, A, B, C\rangle$
- It computes $\mathrm{v}_{1}=e(A, B)$ and $\mathrm{v}_{2}=e(P, C)$
- It declares "DDH" if and only if $\mathrm{v}_{1}=\mathrm{v}_{2}$
- Indeed, If $\mathrm{C}=\mathrm{Pab}^{a b}$ then $\mathrm{e}(\mathrm{A}, \mathrm{B})=\mathrm{e}\left(\mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}\right)=\mathrm{e}(\mathrm{g}, \mathrm{g})^{\mathrm{ab}}=\mathrm{e}\left(\mathrm{g}, \mathrm{g}^{\mathrm{ab}}\right)$
- And since the mapping e is non-degenerate, this equality happens if and only if $\mathrm{c}=\mathrm{ab}$.
- Note that we can only solve the DDH in G, and therefore we can only solve it once.

Diffie-Hellman implications

- What about the CDH (Computation Diffie-Hellman) problem?
- Bilinear maps are not known to be useful for solving the CDH . Therefore this problem might still be hard in G .
- A group G is called a gap Diffie-Hellman group (GDH) if the DDH is easy in G but the CDH is hard
- The definition is independent of the use of bilinear maps
- But bilinear maps enable to construct gaps groups

What groups to use?

- Typically G is an elliptic curve
- An elliptic curve is defined by $y^{2}=x^{3}+1$ over a finite field F_{p}.
- There are many types of curves
- The group G_{t} is normally a finite field
- The bilinear maps are usually the Weil or Tate pairings
- Pretty complicated
- Overhead of the same order as that of exponentiation
- We don't need to understand the details of implementing bilinear pairings in order to use them.

New problems - cryptographic assumptions

- In order to design new cryptographic protocols based on pairings, we need to make new assumptions
- Bilinear Diffie-Hellman: given $\left\langle\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{ab}}\right\rangle$ it is hard to compute e $(\mathrm{g}, \mathrm{g})^{\text {abc }}$ (a "three-way Diffie-Hellman, but the result is in G_{t}).
- Decisional Bilinear Diffie-Hellman: it is hard to distinguish $\left\langle g, g^{a}, g^{b}, g^{a b}\right\rangle$ from $\left\langle g, g^{a}, g^{b}, g^{c}\right\rangle$
- Similar assumptions when the mapping is e: $G_{1} \times G_{2} \rightarrow G_{t}$

Intuition

- Whay are bilinear maps so useful?
- They enable to solve the DDH problem, but only once!
- The solution is easy if we have elements in G. But the solution itself generates elements in G_t for which cannot apply the mapping.
- This level of power enables to construct cryptographic protocols, but is not enough for the adversary to attack the system.

Joux's 3-party Diffie-Hellman protocol

- The goal: let three parties decide on a key using DH
- Can easily do it with in two rounds. We want to do it in a single round
- Let G be a group in which DH is hard, and g a generator. e: $\mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}_{\mathrm{t}}$. Let $\mathrm{h}=\mathrm{e}(\mathrm{g}, \mathrm{g})$.
- Alice picks a random key a. Bob picks b, Carol picks c.
- Alice broadcasts g^{a}, Bob broadcasts g^{b}, Carol broadcasts g^{c}.
- Alice computes $\left(e\left(g^{b}, g^{c}\right)^{a}=h^{\text {abc }}\right.$. Bob and Carol compute $h^{\text {abc }}$ similarly.

Security

- The bilinear mapping lets Alice computes $h^{\text {bc }}$ from g^{b} and g^{c}, and then raises it to the power of a.
- An external adversary cannot compute $h^{\text {abc }}$ from $g^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{c}}$.
- Cannot compute $e\left(g^{a}, e\left(g^{b}, g^{c}\right)\right)$, since $e\left(g^{b}, g^{c}\right)$ is in G_{t} and not in G.
- This is the Bilinear Diffie-Hellman assumption. (We need the Decision Bilinear Diffie-Hellman assumption which states that it is impossible to distinguish $\mathrm{h}^{\text {abc }}$ from random.)

The setting

- Key generation center (KGC)
- Holds the master private key
- Generates public system parameters
- Key derivation: The KGC can provide each user with the private key corresponding to his/her name.
- The private key is a function of the name (or an arbitrary string) and the master private key
- Encryption: everyone can encrypt messages to Alice. The ciphertext is a function of the plaintext, Alice's name, and the public parameters.
- Decryption: Alice uses her private key and the system parameters to decrypt messages sent to her

Boneh and Franklin's IBE scheme

- Let G be a group of order q in which $D H$ is hard, and g a generator of G. e:G×G $\rightarrow \mathrm{G}_{\mathrm{t}}$.
- Let $\mathrm{h}=\mathrm{e}(\mathrm{g}, \mathrm{g})$.
- Let $H_{1}:\{0,1\}^{*} \rightarrow G$, and $H_{2}: G_{t} \rightarrow\{0,1\}^{*}$ be two hash functions.
- Setup:
- KGC picks a random $\mathbf{s} \in[1, \mathrm{q}] . \mathrm{g}^{\mathrm{s}}$ is the public key.
- Private Key:
- The KGC gives Bob the private key $\mathrm{H}_{1}(\mathrm{Bob})^{\text {s }}$.

Boneh and Franklin's IBE scheme

- Encryption:
- To send m to Bob, pick $r \in[1, q]$.
- Ciphertext = $\left(g^{r}, m \oplus H_{2}\left(e\left(H_{1}(B o b), g^{s}\right)^{r}\right)\right)$ $=\left(g^{r}, m \oplus H_{2}\left(e\left(H_{1}(\mathrm{Bob}), g\right)^{\text {rs }}\right)\right)$
- Decryption:
- Bob has an encrypted message (u, v) and a private key $\mathrm{w}=\mathrm{H}_{1}(\mathrm{Bob})^{\mathrm{s}}$.
- He computes $v \oplus H_{2}(e(w, u))=m \oplus H_{2}\left(e\left(H_{1}(\text { Bob }), g\right)^{r s}\right) \oplus$ $\mathrm{H}_{2}\left(\mathrm{e}\left(\mathrm{H}_{1}(\mathrm{Bob})^{\mathrm{s}}, \mathrm{g}^{r}\right)\right)=\mathrm{m}$.

Boneh and Franklin's IBE scheme

- Intuition:
- The message is encrypted with $\mathrm{H}_{2}\left(\mathrm{e}\left(\mathrm{H}_{1}(\mathrm{Bob}), \mathrm{g}\right)^{\text {rs }}\right)$
- Similar to 3-party DH where
- The sender has public key g^{r}, private key r .
- The KGC has public key g^{s}, private key s .
- The recipient has public key $\mathrm{H}_{1}(\mathrm{Bob})$, no private key.
- The session key is $\mathrm{H}_{1}(\mathrm{Bob})^{\text {rs }}=\mathrm{h}^{\text {rs } \log (H(B o b)}$.
- But the KGC gives $\mathrm{H}_{1}(\mathrm{Bob})^{\text {s }}$ to the recipient, so he can use it to find the session key.
- The security proof assumes that $\mathrm{H}_{1}, \mathrm{H}_{2}$ are random oracles

BLS signature scheme

- Boneh, Lynn and Shacham gave a simple, deterministic signature scheme based on pairings.
- The signatures are very short.
- Security is proven under the random-oracle model.
- Keys:
- Private key: x. Public key: gx. Hash function H()$\rightarrow \mathrm{G}$.
- Signature:
$-\operatorname{Sign}(m)=\sigma=(H(m))^{x}($ in $G)$.
- Verification:
- Check if $\left\langle\mathrm{g}, \mathrm{g}^{\mathrm{x}}, \mathrm{H}(\mathrm{m}), \sigma\right\rangle$ is a DDH tuple. Namely, check if $\mathrm{e}(\mathrm{g}, \sigma)=\mathrm{e}\left(\mathrm{g}^{\mathrm{x}}, \mathrm{H}(\mathrm{m})\right)$.

BLS signature scheme

- Security:
- Unexistentially forgeable
- under adaptive chosen message attack
- in the random oracle model
- assuming that the CDH is hard on certain elliptic curves over a finite field of characteristic
- Efficiency:
- signing is fast, one hashing operation and one exponentiation.
- Verification requires two pairing computations,
- The signature is just an element in G, which is 154 bits long if we use an elliptic curve on $\mathrm{F}_{3 \text { ^g7 }}$
- half the size of DSA (EI Gamal variant) signature in DSA (320 bits) with comparable security.

Multisignature

- Several signers need to sign the same message m.
- Each signer P_{i} has secret key is Xi and public key $\mathrm{Yi}=$ $g^{\mathrm{Xi}^{i}}$.
- Signature: the signature on m is $\sigma=\Pi_{\mathrm{i}=1, \ldots, \mathrm{n}} \sigma_{\mathrm{i}}$, where σ_{i} is the BLS signature. Namely, each signer computes $\sigma_{\mathrm{i}}=(\mathrm{H}(\mathrm{m}))^{\mathrm{X}_{\mathrm{i}}}$ and then they multiply their signatures.
- Verification:
- As in BLS, accept if $e(\mathrm{~g}, \sigma)=\mathrm{e}\left(\Pi_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{Yi}, \mathrm{H}(\mathrm{m})\right)$

Aggregate signatures

- Several signers want to sign different message $\mathrm{m}_{1}, \ldots, \mathrm{~m}_{\mathrm{n}}$. (e.g., certificates.)
- Each signer P_{i} has secret key is Xi and public key $\mathrm{Yi}=$ $g^{\mathrm{xi}^{\mathrm{i}}}$.
- Siganture:
- Frst, each signer computes its signature $\sigma_{i}=\left(H\left(m_{i}\right)\right)^{\mathrm{X}_{\mathrm{i}}}$
- The signers then multiply their signatures, $\sigma=\Pi_{\mathrm{i}=1, \ldots, n} \sigma_{\mathrm{i}}$.
- Verification:
- Accept if $\mathrm{e}(\mathrm{g}, \sigma)=\prod_{\mathrm{i}=1, \ldots, \mathrm{n}} \mathrm{e}\left(\mathrm{Yi}, \mathrm{H}\left(\mathrm{m}_{\mathrm{i}}\right)\right)$
- This scheme is secure against existential forgery with chosen message attacks if the computational Co-DH problem is hard: given $\mathrm{g}, \mathrm{g}^{\mathrm{a}}$ (in G), and h (in G_{t}), it is hard to compute h^{2} in G_{t}.

