Advanced Topics in Cryptography

Final Homework

Due by July 4, 2006

1. In the lecture we showed a 4 -server PIR protocol with $O\left(n^{1 / 3}\right)$ communication. Design a similar protocol for 8 -server PIR and try to minimize its communication overhead.
2. This question investigates the Cramer-Shoup cryptosystem. Consider a variant of this system in which the decryption process does not include the consistency check. Namely, where given a ciphertext $\langle u, v, e, w\rangle$ the decryption process simply outputs $e /\left(u^{x} v^{y}\right)$. Show exactly where the proof of security fails.
3. Consider a protocol for bidding in an auction where the seller publishes a public key $P K$ and each player sends an encryption $E_{P K}(x)$ of its bid x.
Show a chosen-plaintext secure encryption system E, such that there is an algorithm which given $P K$ and a ciphertext $y=E_{P K}(x)$ can generate a ciphertext y^{\prime} of the plaintext $x+1$. You cannot assume that the algorithm knows x. Explain how a bidder might try to cheat in the protocol using this algorithm.
Show that this problem does not exist with encryption systems which provide chosen-ciphertext security. Namely, show that if $E()$ provides chosen-ciphertext security it is impossible to change $E(x)$ to $E(x+1)$ with more than negligible success. Try to formulate this statement as accurately as possible, and prove it. (Hint: show that if it is possible to change $E(x)$ to $E(x+1)$ then it is possible to attack the chosen-ciphertext security of E.)
4. This question investigates the Decisional Linear Diffie-Hellman assumption:

Decisional Linear Diffie-Hellman assumption: Let G be a group of order p. Let u, v, h, s be randomly chosen generators of G, and let a, b be random elements in $[1, p]$. Then it is hard for any polynomial time algorithm to distinguish between the tuples $\left\langle u, v, h, u^{a}, v^{b}, h^{a+b}\right\rangle$ and $\left\langle u, v, h, u^{a}, v^{b}, s\right\rangle$. (In other words, given $\left\langle u, v, h, u^{a}, v^{b}, h^{c}\right\rangle$ it is hard to decide whether $c=a+b \bmod p$.)
Question 4.a: Show that an algorithm for solving the Decisional Linear Diffie-Hellman problem in G gives an algorithm for solving the Decisional Diffie-Hellman problem in G.
It is believed that the converse in not true. Namely, that the Decisional Linear Diffie-Hellman problem is hard even in groups in which the DDH problem is easy. This motivates the construction of an encryption scheme based on the Decisional Linear Diffie-Hellman assumption. This encryption scheme works as follows:

Public key generators u, v, h of G.
Private key exponents $x, y \in[1, p]$ such that $u^{x}=v^{y}=h$.
Encryption To encrypt a message $m \in g$ choose random $a, b \in[1, p]$ and output triple $\left\langle u^{a}, v^{b}, m \cdot h^{a+b}\right\rangle$.
Decryption To decrypt $\left\langle T_{1}, T_{2}, T_{3}\right\rangle$ compute $T_{3} /\left(T_{1}^{x} \cdot t_{2}^{y}\right)$.
Question 4.b: Show how the user can generate the private and public keys.
Question 4.c: Show that decryption is always correct.
Question 4.d: Show that this encryption system is semantically secure against a chosen-plaintext attack, assuming that the Decisional Linear Diffie-Hellman assumption holds.

