Advanced Topics in Cryptography

Lecture 9
Secure Two-Party and Multi-Party Computation

Benny Pinkas
In the last class we learned Yao’s protocol for secure two-party computation.

- The protocol is based on first representing the function as a Boolean circuit.
Example application

- Comparing two N bit numbers
- What’s the overhead?
Applications

- Two parties. Two large data sets.
- Max?
- Mean?
- Median?
- Intersection?
- Sorting? (useful as a subcircuit)
Conclusions

- If the circuit is not too large:
 - Efficient secure two-party computation.
 - Also, efficient multi-party computation with two semi-trusted parties.
 - Many parties with private inputs
 - Two designated parties that are assumed not to collude
 - Each party with input x_i sends the two parties random shares x_i^1, x_i^2 such that $x_i^1 \oplus x_i^2 = x_i$.
 - The two designated parties run the computation.

- If the circuit is large: we currently need ad-hoc solutions.
A two-party protocol for a function which does not have a short circuit
Related papers

- Secure computation of medians
Secure Function Evaluation

- Yao’s protocol is efficient for medium size circuits, but what about functions that cannot be represented as small circuits?
k^{th}\text{-ranked element} \ (e.g. median)

- **Inputs:**
 - Alice: S_A
 - Bob: S_B
 - *Large* sets of *unique* items ($\in D$).

- **Output:**
 - $x \in S_A \cup S_B$ s.t. x has $k-1$ elements smaller than it.

- **The rank k**
 - Could depend on the size of input datasets.
 - Median: $k = (|S_A| + |S_B|) / 2$

- **Motivation:**
 - Basic statistical analysis of distributed data.
 - E.g. histogram of salaries in different companies
Secure computation in the case of large circuit representation

- The Problem:
 - The size of a circuit for computing the k^{th} ranked element is at least linear in k. This value might be very large.
 - Generic constructions using circuits [Yao …] have communication complexity which is linear in the circuit size, and therefore in k.

- It is sometimes possible to design specific protocols for specific problems, and obtain a much better overhead.
- We will show such a protocol for computing the k^{th} ranked element, for the case of semi-honest parties.
An (insecure) two-party median protocol

L_A lies below the median, R_B lies above the median. $|L_A| = |R_B|

New median is same as original median.

Recursion \rightarrow Need $\log n$ rounds
(assume each set contains $n=2^i$ items)
A Secure two-party median protocol

A finds its median m_A

B finds its median m_B

Yes

$A < m_B$

NO

$A > m_A$

$B < m_B$

A deletes elements $\leq m_A$.

B deletes elements $> m_B$.

A deletes elements $> m_A$.

B deletes elements $\leq m_B$.

Secure comparison (e.g. a small circuit)
An example
Proof of security

median

A

B

\[m_A > m_B \]

\[m_A < m_B \]

\[m_A > m_B \]

\[m_A < m_B \]
Proof of security

- This is a proof of security for the case of semi-honest adversaries.
- Security for malicious adversaries is more complex.
 - The protocol must be changed to ensure that the parties’ answers are consistent with some input.
 - Also, the comparison of the medians must be done by a protocol secure against malicious adversaries.
Arbitrary input size, arbitrary k

Now, compute the median of two sets of size k.

Size should be a power of 2.

median of new inputs = k^{th} element of original inputs
Hiding size of inputs

- Can search for k^{th} element without revealing size of input sets.
- However, $k=n/2$ (median) reveals input size.
- Solution: Let $S=2^i$ be a bound on input size.

Median of new datasets is same as median of original datasets.
Secure Computation in the Multi-Party Setting
Secure computation for more than two parties, computing **Boolean** circuits.

GMW (Goldreich-Micali-Wigderson)
- First, for semi-honest adversaries.
- Then, general compiler from semi-honest to malicious
- # rounds depends on circuit depth

BMR (Beaver-Micali-Rogaway)
- O(1) rounds
The setting

- Parties \(P_1, \ldots, P_n \)
- Inputs \(x_1, \ldots, x_n \) (bits, but can be easily generalized)
- Outputs \(y_1, \ldots, y_n \)

- The functionality is described as a Boolean circuit.
 - Wlog, uses only XOR (+) and AND gates
 - NOT(x) is computed as a x+1
 - Wires are ordered so that if wire k is a function of wires i and j, then i<k and j<k.
The adversary controls a subset of the parties

- This subset is defined before the protocol begins (is “non-adaptive”)
- We will not cover the adaptive case

Communication

- Synchronous
- Private channels between any pair of parties (can be easily implemented using encryption)
Adversarial models

- Semi-honest

- Malicious with no abort
 - GMW: A protocol secure any number of malicious parties

- Malicious with abort
 - GMW: A protocol secure against a minority of malicious parties with abort (will not be discussed here).
Protocol for semi-honest setting

The protocol:

- Each party shares its input bit
- Scan the circuit gate by gate
 - Input values of gate are shared by the parties
 - Run a protocol computing a sharing of the output value of the gate
- Repeat
- Publish outputs
Protocol for semi-honest setting

- The protocol:
 - Each party shares its input bit
 - The sharing procedure:
 - P_i has input bit x_i
 - It chooses random bits $r_{i,j}$ for all $i \neq j$.
 - Sends bit $r_{i,j}$ to P_j.
 - Sets its own share to $r_{i,i} = x_i + (\Sigma_{j \neq i} r_{i,j}) \mod 2$
 - Therefore $\Sigma_{j=1 \ldots n} r_{i,j} = x_i \mod 2$.

- Now every P_j has n shares, one for each input x_i of each P_i.
Evaluating the circuit

- Scan circuit by the order of wires
- Wire c is a function of wires a, b
- P_i has shares a_i, b_i. Must get share of c_i.

Addition gate:
- P_i computes $c_i = a_i + b_i \mod 2$.

Indeed, $c = a+b \mod 2 = (a_1+\ldots+a_n) + (b_1+\ldots+b_n) = (a_1+b_1)+\ldots+(a_n+b_n) = c_1+\ldots+c_n$
Evaluating multiplication gates

- \(c = a \cdot b = (a_1 + \ldots + a_n) \cdot (b_1 + \ldots + b_n) = \sum_{i=1}^{n} a_i b_i + \sum_{i \neq j} a_i b_j = \sum_{i=1}^{n} a_i b_i + \sum_{1 \leq i < j \leq n} (a_i b_j + a_j b_i) \)

- \(P_i \) will receive a share of \(a_i b_i + \sum_{i<j \leq n} (a_i b_j + a_j b_i) \)

- Computing \(a_i b_i \) by \(P_i \) is easy
- What about \(a_i b_j + a_j b_i \)?
- \(P_i \) and \(P_j \) run the following protocol for every \(i < j \).
Evaluating multiplication gates

- **Input:** P_i has a_i, b_i, P_j has a_j, b_j.
- P_i outputs $a_i b_j + a_j b_i + s_{i,j}$. P_j outputs $s_{i,j}$.
- P_j:
 - Chooses a random $s_{i,j}$
 - Computes the four possible outcomes of $a_i b_j + a_j b_i + s_{i,j}$, depending on the four options for P_i's inputs.
 - Sets these values to be its input to a 1-out-of-4 OT

- P_i is the receiver, with input $2a_i + b_i$.
Recovering the output bits

- The protocol computes shares of the output wires.

- Each party sends its share of an output wire to the party P_i that should learn that output.

- P_i can then sum the shares, obtain the value and output it.
Proof of Security

- Recall definition of security for semi-honest setting:
 - Simulation - Given input and output, can generate the adversary’s view of a protocol execution.

- Suppose that adversary controls the set J of all parties but P_i.
- The simulator is given (x_j, y_j) for all $P_j \in J$.
The simulator

- Shares of input wires: \(\forall j \in J \) choose
 - a random share \(r_{j,i} \) to be sent from \(P_j \) to \(P_i \),
 - and a random share \(r_{i,j} \) to be sent from \(P_i \) to \(P_j \).

- Shares of multiplication gate wires:
 - \(\forall j < i \), choose a random bit as the value learned in the 1-out-of-4 OT.
 - \(\forall j > i \), choose a random \(s_{i,j} \), and set the four inputs of the OT with \(P_i \) accordingly.

- Output wire \(y_j \) of \(j \in J \): set the message received from \(P_i \) as the XOR of \(y_j \) and the shares of that wire held by \(P_j \in J \).
Security proof

- The output of the simulation is distributed identically to the view in the real protocol
 - Certainly true for the random shares \(r_{i,j}, r_{j,i} \) sent from and to \(P_i \).
 - OT for \(j<i \): output is random, as in the real protocol.
 - OT for \(j<i \): input to the OT defined as in the real protocol.
 - Output wires: message from \(P_i \) distributed as in the real protocol.

- QED
Must run an OT for every multiplication gate
- Namely, public key operations per multiplication gate
- Need a communication round between all parties per every multiplication gate

- Can process together a set of multiplication gates if all their input wires are already shared
- Therefore number of rounds is $O(d)$, where d is the depth of the circuit (counting only multiplication gates).
The BMR protocol

- Beaver-Micali-Rogaway
- A multi-party version of Yao’s protocol
- Works in O(1) communication rounds, regardless of the depth of the Boolean circuit.

The BMR protocol

- Two random seeds (garbled values) are set for every wire of the Boolean circuit:
 - Each seed is a concatenation of seeds generated by all players and secretly shared among them.
- The parties securely compute together a 4x1 table for every gate (in parallel):
 - Given 0/1 seeds of the input wires, the table reveals the seed of the resulting value of the output wire.
The BMR protocol

- The parties securely compute together a 4x1 table for every gate (in parallel):
 - This is essentially a secure computation of the table
 - But all tables can be computed in parallel. Therefore O(1) rounds.
 - This is the main bottleneck of the BMR protocol.

- Given the tables, and seeds of the input values, it is easy to compute the circuit output.
The malicious case

- What can go wrong with malicious behavior?
 - Using shares other than those defined by the protocol, using arbitrary inputs to the OT protocol and sending wrong shares of output wires...

- We will show a compiler which forces the parties to operate as in the semi-honest model. (For both GMW and BMR.)

- The basic idea:
 - In every step, each P_i proves in zero knowledge that its messages were computed according to the protocol
Zero knowledge proofs
(we studied this already)

- Prover P, verifier V, language L
- P proves that $x \in L$ without revealing anything
 - Completeness: V always accepts when $x \in L$, and an honest P and V interact.
 - Soundness: V accepts with negligible probability when $x \notin L$, for any P^*.
 - Computational soundness: only holds when P^* is polynomial-time
- Zero-knowledge:
 - There exists a simulator S such that $S(x)$ is indistinguishable from a real proof execution.

May 20, 2014
A warm-up

Assume that each party P_i runs a deterministic program Π_i. The compiler is the following:

- Each P_i commits to its input x_i by sending $C_i(r_i,x_i)$, where r_i is a random string used for the commitment.
- Let T_i^s be the transcript of P_i at step s, i.e. all messages received and sent by P_i until that step.
- Define the language $L_i = \{T_i^s \text{ s.t. } \exists x_i, r_i \text{ so that all messages sent by } P_i \text{ until step } s \text{ are the output of } \Pi_i \text{ applied to } x_i, r_i \text{ and to all messages received by } P_i \text{ up to that step}\}$
- When sending a message in step s prove in zero-knowledge that $T_i^s \in L_i$.

A warm-up

May 20, 2014
Handling randomized protocols

- The previous construction assumes that P_i’s program, Π_i, is deterministic.

- This is *not* true in the semi-honest protocol we have seen.
 - In particular, the choice of shares, and the sender’s input to the OT, must be random.
 - The compiler must ensure that P_i chooses its random coins *independently* of the messages received from other parties.
 - This is not ensured by the previous construction.
The compiler

- We will describe the basic issues of a protocol secure against any number of malicious parties, but with no aborts allowed.

- Communication model:
 - Messages are published on a bulletin board, and can be read by all parties.
 - This implements a broadcast, ensuring that all parties receive the same message.
 - Broadcast can be easily implemented if a public key infrastructure exists.
 - We assume that a PKI does exist.
The compiler

- **Input commitment phase:**
 - Each party commits to its input.

- **Coin generation phase:**
 - The parties generate random tapes for each other (this ensures that the randomness is independent of the messages.)
 - Initial idea: random tape of P_i is defined as $s_{1,i} \oplus s_{2,i} \oplus \ldots \oplus s_{n,i}$, where $s_{j,i}$ is chosen by P_j.
 - But this lets P_n control the outcome 😞

- **Protocol emulation phase:**
 - Run the protocol while proving that the operations of the parties comply with their inputs and random tapes.
The protocol: Input commitment phase

- The required functionality for P_1 is
 $$ (x,1^{|x|}, \ldots ,1^{|x|}) \rightarrow (r, C_r(x), \ldots C_r(x)), $$
 and similarly for each P_i.

 (This is required in order to choose the randomness.)

- It is not sufficient to ask P_1 to just broadcast a commitment of its input

 This does not ensure that this is a random commitment for which P_i knows a decommitment.

- The protocol is more complex…

- It is useful to first design tools that can help in constructing the compiler.

May 20, 2014
The required functionality is \((a,1^{|a|},\ldots 1^{|a|}) \rightarrow (\lambda, f(a), \ldots, f(a))\) (all receive the same function of \(a\))

Protocol

- \(P_1\) broadcasts an encryption of \(f(a)\) (\(f()\) is a public function)
- For \(j=2\ldots n\), \(P_1\) proves to \(P_j\) a zero-knowledge proof of knowledge of a value \(a\) corresponding to \(f(a)\).
- If \(P_j\) rejects, it broadcasts the coins it used in the proof.

Output: For \(j=2\ldots n\), if \(P_j\) sees a *justifiable rejection* it aborts, otherwise it outputs \(f(a)\).

- Agreement to whether \(P_1\) misbehaved is reduced to the decision on whether some verifier has justifiably rejected the proof.
Tool 1: image transmission

- The required functionality is \((a, 1^{|a|}, \ldots 1^{|a|}) \rightarrow (\lambda, f(a), \ldots, f(a))\)

- Agreement as to whether \(P_1\) misbehaved is reduced to the decision on whether some verifier has justifiably rejected the proof.

- If \(P_1\) is honest, then no malicious party can claim that it cheated.
The required functionality is
\[(a,b_2,\ldots,b_n) \mapsto (\lambda,v_2, \ldots, v_n),\]
where \(v_j = f(a)\) if \(b_j = h(a)\) and \(v_j = \lambda\) otherwise.

Protocol:

- Use the image transmission tool to broadcast \((f(a),h(a))\) to all \(P_j, j=2\ldots n\).
- \(P_j\) outputs \(f(a)\) if \(b_j = h(a)\), and \(\lambda\) otherwise.

Comment: \(P_j\) learns a function \(f(a)\) of \(a\), if it already has the function \(h(a)\) (e.g., if it has a commitment to \(a\))
Tool 3: multi-party augmented coin-tossing

- The required functionality is
 \[(1^n, \ldots, 1^n) \rightarrow (r, g(r), \ldots, g(r)).\]

- Typically we will use it for computing
 \[(1^n, \ldots, 1^n) \rightarrow ((r, s), C_s(r), \ldots, C_s(r)),\] where \(r\) is random.

- The challenge: ensuring that \(P_1\)'s output is random. We cannot trust \(P_1\) to choose a random output.
Tool 3: multi-party augmented coin-tossing

$(1^n, \ldots, 1^n) \rightarrow ((r,s), C_s(r), \ldots, C_s(r))$.

- **Toss** and commit: $\forall i$, P_i chooses r_i, s_i and uses the image transmission tool to send $c_i = C_{S_i}(r_i)$ to all P_j.
- **Open commits**: $\forall i \geq 2$, P_i uses the authenticated computation tool to send s_i, r_i to all parties that already have c_i.
 - If P_j obtains r_i agreeing with c_i, it sets $r_i^j = r_i$ (also, $r_j^j = r_j$). Otherwise it aborts.
 - If P_1 did not abort, it sets $r = \bigoplus_{i=1}^n r_i$, sends $C_s(r)$ to all other parties (to be used for the main protocol), and proves that $C_s(r)$ was constructed correctly.
 - (details in the next slide)
Tool 3: multi-party augmented coin-tossing (contd.)

- P_1 sends $C_s(r)$ to all other parties, and proves that it was constructed correctly.

- Run the **authenticated computation** functionality
 - P_1 chooses a random s. Its input to the protocol is $(r_1, s, s, \oplus_{j=2}^{n} r_i^1)$
 - P_j's input is $c_1, \oplus_{j=2}^{n} r_i^j$.
 - If $c_1 = C_{S1}(r_1)$ and $\oplus_{j=2}^{n} r_i^j = \oplus_{j=2}^{n} r_i^1$, then P_j outputs $C_s(\oplus_{j=1}^{n} r_i) = C_s(r)$. Otherwise it aborts.
 - P_1 outputs r.

48 May 20, 2014
The main protocol:
Input commitment phase

- Protocol:
 - P_i chooses random r'_i and uses the image transmission functionality to send $c' = C_{r'_i}(x_i)$ to all parties.
 - Run augmented coin-tossing protocol s.t. P_i learns (r_i, r''_i) and others learn $c'' = C_{r''_i}(r_i)$.
 - Run authenticated computation where P_i has input (x_i, r_i, r'_i, r''_i) and others input (c', c''), and others learn $C_{r_i}(x_i)$ if (c', c'') are the required functions of P_i’s input.
The main protocol:
coin generation phase

- Each P_i runs the augmented coin tossing protocol where
 - P_i learns (r^i, s^i)
 - The other parties learn $C_{s_i}(r^i)$.
The main protocol:
Protocol emulation phase

- The parties use the authenticated computation functionality
 - \((a, b_2, \ldots, b_n) \rightarrow (\lambda, v_2, \ldots, v_n)\), where \(v_j = f(a)\) if \(b_j = h(a)\) and \(v_j = \lambda\) otherwise.

- Suppose that it is \(P_i\)'s turn to send a message
 - Its input is \((x_i, r^i, T_t)\), as well as the coins used for commitments, where \(T_t\) is the sequence of messages exchanged so far.
 - Every other party has input \((C(x_i), C(r^i), T_t)\)
 - \(f(x_i, r^i, T_t)\) is the message \(P_i\) must send
 - It is accepted if \((C(x_i), C(r_i), T)\) agree with \(x_i, r_i, T\) and the program that is run
Summary

- Can compute any functionality securely in presence of semi-honest adversaries
- Protocol is efficient enough for use, for circuits that are not too large
- The full proof is in Goldreich’s book.