Advanced Topics in Cryptography

Lecture 2

Benny Pinkas

Based on slides of Yehuda Lindell
Zero Knowledge

- Prover P, verifier V, language L
- P proves that $x \in L$ without revealing anything
 - **Completeness**: V always accepts when honest P and V interact
 - **Soundness**: V accepts with negligible probability when $x \notin L$, for any P^*
 - Computational soundness: only holds when P^* is polynomial-time
- **Zero-knowledge**:
 - There exists a simulator S such that $S(x)$ is indistinguishable from a real proof execution
ZK Proof of Knowledge

- Prover P, verifier V, relation R
- P proves that it knows a witness w for which $(x,w) \in R$ without revealing anything
 - The proof is zero knowledge as before
 - There exists an extractor K that can obtain from any P^*, a w such that $(x,w) \in R$, with the same probability that P^* convinces V.

- Equivalently:
 - The protocol securely computes the functionality $f_{zk}((x,w),x) = (-, R(x,w))$
Zero Knowledge

- An amazing concept; everything can be proven in zero knowledge
- Central to fundamental feasibility results of cryptography (e.g., GMW)

- But, can it be efficient?
 - It seemed that zero-knowledge protocols for “interesting languages” are complicated and expensive
- Zero knowledge is often avoided at significant cost
Sigma Protocols

- A way to obtain efficient zero knowledge
 - Many general tools
 - Many interesting languages can be proven with a sigma protocol
An Example – Schnorr DLOG

- Let G be a group of order q, with generator g
- P and V have input $h \in G$. P has w such that $g^w = h$
- P proves that to V that it knows $\text{DLOG}_g(h)$
 - P chooses a random r and sends $a = g^r$ to V
 - V sends P a random $e \in \{0, 1\}$
 - P sends $z = r + ew \mod q$ to V
 - V checks that $g^z = ah^e$

Completeness

- $g^z = g^{r+ew} = g^r(g^w)^e = ah^e$
Proof of knowledge

Assume P can answer two queries e and e' for the same a

Then, it holds that $g^z = ah^e$, $g^{z'} = ah^{e'}$

Thus, $g^zh^{-e} = g^{z'}h^{-e'}$ and $g^{z-z'} = h^{e-e'}$

Therefore $h = g^{(z-z')/(e-e')}$

That is: $\text{DLOG}g(h) = (z-z')/(e-e')$

Conclusion:

If P can answer with probability greater than $1/2^t$, then it must know the dlog
Schnorr’s Protocol

- What about zero knowledge? This does not seem easy.
- But ZK holds if the verifier sends a random challenge e.
- This property is called “Honest-verifier zero knowledge”.
 - The simulation:
 - Choose a random z and e, and compute $a = g^zh^{-e}$.
 - Clearly, (a, e, z) have the same distribution as in a real run, and $g^z = ah^e$.

- This is not a very strong guarantee, but we will see that it yields efficient general ZK.
Definitions

- Sigma protocol template
 - **Common input:** P and V both have x
 - **Private input:** P has w such that $(x, w) \in \mathbb{R}$

- **Protocol:**
 - P sends a message a
 - V sends a random t-bit string e
 - P sends a reply z
 - V accepts based solely on (x, a, e, z)
Definitions

- **Completeness**: as usual

- **Special soundness**: There exists an algorithm A that given any x and pair of transcripts $(a,e,z),(a,e',z')$ with $e \neq e'$ outputs w s.t. $(x,w) \in R$

- **Special honest-verifier ZK**
 - There exists an M that given any x and e outputs (a,e,z) which is distributed exactly like a real execution where V sends e
Sigma Protocol for proving a DH Tuple

- Relation R of Diffie-Hellman tuples
 \[(g,h,u,v) \in R \text{ iff there exists } w \text{ s.t. } u=g^w \text{ and } v = h^w \]
 - Useful in many protocols
- This is a proof of membership, not of knowledge

- Protocol
 - P chooses a random \(r \) and sends \(a=g^r, \ b=h^r \)
 - V sends a random \(e \)
 - P sends \(z=r+ew \mod q \)
 - V checks that \(g^z=a^e v^e, \ h^z=b^e v^e \)
Sigma Protocol DH Tuple

- **Completeness:** as in DLOG
- **Special soundness:**
 - Given \((a,b,e,z),(a,b,e',z')\), we have \(g^z = au^e, g'^z = au'^e, h^z = bv^e, h'^z = bv'^e\) and so like in DLOG on both
 - \(w = (z-z')/(e-e')\)
- **Special HVZK**
 - Given \((g,h,u,v)\) and \(e\), choose random \(z\) and compute
 - \(a = g^zu^{-e}\)
 - \(b = h^zv^{-e}\)
Basic Properties

- Any sigma protocol is an interactive proof with soundness error 2^{-t}

- Properties of sigma protocols are invariant under parallel composition

- Any sigma protocol is a proof of knowledge with error 2^{-t}
 - The difference between the probability that P^* convinces V and the probability that an extractor K obtains a witness is at most 2^{-t}
 - Proof needs some work
Tools for Sigma Protocols

- Prove compound statements
 - AND, OR, subset

- ZK from sigma protocols
 - Can first make a compound sigma protocol and then compile it

- ZKPOK from sigma protocols
AND of Sigma Protocols

- To prove the AND of multiple statements
 - Run all in parallel
 - Can use the same verifier challenge e in all

- Sometimes it is possible to do better than this
 - Statements can be batched
 - E.g. proving that many tuples are DDH can be done in much less time than running all proofs independently
 - Batch all into one tuple and prove
This is more complicated

- Given two statements and two appropriate Sigma protocols, wish to prove that at least one is true, without revealing which

The solution – an ingenious idea from [CDS]

- Using the simulator, if e is known ahead of time it is possible to cheat
- We construct a protocol where the prover can cheat in one out of the two proofs
The template for proving x_0 or x_1:

- P sends two first messages (a_0, a_1)
- V sends a single challenge e

P replies with

- Two challenges e_0, e_1 s.t. $e_0 \oplus e_1 = e$
- Two final messages z_0, z_1

V accepts if $e_0 \oplus e_1 = e$ and $(a_0, e_0, z_0), (a_1, e_1, z_1)$ are both accepting

How does this work?
OR of Sigma Protocols

- **P** sends two first messages \((a_0, a_1)\)
 - Suppose that **P** has a witness for \(x_0\) (but not for \(x_1\))
 - **P** chooses a random \(e_1\) and runs SIM to get \((a_1, e_1, z_1)\)
 - **P** sends \((a_0, a_1)\)
- **V** sends a single challenge \(e\)
- **P** replies with \(e_0, e_1\) s.t. \(e_0 \oplus e_1 = e\) and with \(z_0, z_1\)
 - **P** already has \(z_1\) and can compute \(z_0\) using the witness
- **Soundness**
 - If **P** doesn’t know a witness for \(x_1\), he can only answer for a single \(e_1\)
 - This means that \(e\) defines a single challenge \(e_0\), like in a regular proof
OR of Sigma Protocols

- Special soundness
 - Relative to first message \((a_0, a_1)\), and two different \(e, e'\), it holds that either \(e_0 \neq e'_0\) or \(e_1 \neq e'_1\) (because \(e_0 \oplus e_1 = e\) and \(e'_0 \oplus e'_1 = e'\)).
 - Thus, we will obtain two different continuations for at least one of the statements, and from the special soundness of a single protocol it is possible to compute a witness for that statement, which is also a witness for the OR statement.

- Honest verifier ZK
 - Can choose both \(e_0, e_1\), so no problem
 - Note: it is possible to prove an OR of different statements using different protocols
OR of Many Statements

- **Prove k out of n statements** x_1, \ldots, x_n
 - A = set of indices that prover knows how to prove; the other indices are denoted as B
 - Use secret sharing with threshold $n-k$
 - Field elements 1,2,…,n, polynomial f with free coefficient s
 - Share of s for party P_i: $f(i)$

- **Prover**
 - For every $i \in B$, prover generates (a_i, e_i, z_i) using SIM
 - For every $j \in A$, prover generates a_j as in protocol
 - Prover sends (a_1, \ldots, a_n)
OR of Many Statements

- Prover sent \((a_1, \ldots, a_n)\)
- Verifier sends a random field element \(e \in F\)
- Prover finds the polynomial \(f\) of degree \(n-k\) passing through all \((i, e_i)\) and \((0, e)\) (for \(i \in B\))
 - The prover computes \(e_j = f(j)\) for every \(j \in A\)
 - The prover computes \(z_j\) as in the protocol, based on transcript \(a_j, e_j\)
- Soundness follows because there are \(|F|\) possible vectors and the prover can only answer one
General Compound Statements

- This can be generalized to any monotone formula (meaning that the formula contains AND/OR but no negations)
 - See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO'94.