
Efficient State Updates for Key Management

Benny Pinkas

HP Labs
Princeton, NJ, USA

benny.pinkas@hp.com

Abstract

Encryption is widely used to enforce usage rules for digital content. In many sce-
narios content is encrypted using a group key which is known to a group of users that
are allowed to use the content. When users leave or join the group the group key must
be changed. The LKH (Logical Key Hierarchy) algorithm is a very common method of
managing these key changes. In this algorithm every user keeps a personal key com-
posed of log n keys (for a group of n users). A key update message consists of O(log n)
keys.

A major drawback of the LKH algorithm is that users must update their state
whenever users join or leave the group. When such an event happens a key update
message is sent to all users. A user who is offline during t key updates, and which needs
to learn the keys sent in these updates as well as update its personal key, should receive
and process the t key update messages, of total length O(t log n) keys. In this paper
we show how to reduce this overhead to a message of O(log t) keys. We also note that
one of the methods that are used in this work to reduce the size of the update message
can be used is other scenarios as well. It enables to generate n pseudo-random keys of
length k bits each, such that any successive set of t keys can be represented by a string
log(t) · k bits, without disclosing any information about the other keys.

1 Introduction and Motivation

Digital Rights Management (DRM) systems provide content which is accompanied by rules
or controls that define the ways in which the content can be used. The rules are enforced by
a governance mechanism that ensures that only legitimate operations can be applied to the
content. The most simple governance mechanism is encryption: The content is encrypted
and the decryption key is only given to users which are allowed to use the content1.

To model this setting we consider the following simplified scenario. A group U of n par-
ties is receiving encrypted content from servers (or alternatively the parties are exchanging
encrypted communication between themselves). All parties share a group key which is man-
aged by a group controller (GC). We assume that the GC can communicate with each of the

1If the usage rules are of the type “User A can get the content and do anything he wants with it” then
encryption can be the only governance mechanism that is used. If the rules are more complex. For instance,
“User B can use the content at most three times” then more complex mechanisms should be used (e.g. based
on tamper resistance), but typically encryption is used as a first line of defense.

1

other parties using secure one-to-one channels, which are realized using standard encryption
and authentication techniques. In order to do so the GC typically shares a different key
with each of the users.

The content servers deliver the content encrypted with the group key, to ensure that
only group members can use it. The system therefore enforces the rule “Group members are
allowed to use content sent by content servers”, since knowledge of the group key enables
decryption of the content. This system can model a content subscription group, namely
where members of the group U are subscribers which are allowed to use the content.

In order to enforce the usage rules the group key must be changed when users join or
leave the group. This is essential in order to

• Prevent leaving members from decrypting content that will be sent to the group in
the future.

• Prevent joining members from decrypting content that was previously sent to the
group (namely, provide backward secrecy).

Joins are usually trivial to handle. When a user u′ wants to join U the GC should pick
a new group key, send a message to the group containing the new key encrypted with the
old group key, and also inform u′ of the value of the new key. (There are many ways in
which these messages can be sent, but they are mostly irrelevant for the discussion of this
paper.) All further content sent to the group should be encrypted with the new key, until
other members join or leave the group. This procedure supports backward secrecy and
prevents u′ from decrypting old content that was sent to the group. (We note that in the
LKH key management scheme, which is the focus of this paper, the join operation is more
complicated. We discuss this issue below.)

The main design challenge is to efficiently handle events in which users leave the group,
or are forced by the GC to leave the group (say, because they violated usage rules). When
a user u leaves the group a new group key should be generated by the GC and become
known to every user remaining in the group. The keys known to u should be revoked in
a way which prevents u from learning any information about messages encrypted with the
new group key.

There is of course a trivial method for rekeying the group in the case of a leave: The GC
chooses a new group key k, and sends it independently and privately to each of the users,
except for the leaving member. For example, the GC can share a different key with each
user, and encrypt k using this key. The problem with this approach is that the GC has to
send a total of n − 1 encryptions (the length of each is of the same order as the length of
the new key). The total length of the messages it has to send is therefore O(n) keys (or
O(n|k|) bits) and might be too large if the number of group members n is large (say, a few
millions).

1.1 The LKH Scheme

A very appealing user revocation method was suggested in [16, 17]. In this method, com-
monly denoted as LKH (Logical Key Hierarchy), the GC associates a binary tree with the
group, and associates each user with a different leaf of this tree. Therefore for a group of
n users the tree is of depth d = log(n). The tree is used for key management and is not

2

K000

K00

K0

K01

K010K001 K011 K100

K10

K101 K110 K111

K11

K1

U0 U1 U2 U3 U4 U5 U6 U7

Group Key
K

Figure 1: The LKH key data structure (the keys of U0 are encircled).

used as part of the mechanism in which messages are sent to users (in particular, it has no
relation with distribution trees used in multicast communication).

The GC associates a random key with each node of the tree, and therefore knows the
keys of all the nodes in the tree. The GC also provides each user with all the keys in the
path from the user’s leaf to the root. Since all these paths converge at the root of the tree,
every user knows the root key and therefore this key can serve as the group key. In the
example depicted in Figure 1, user U0 is associated with the leftmost leaf and knows keys
K, K0,K00 and K000. The root key K is the group key.

When a user is removed from the group the GC must change all the keys in the path
from this user’s leaf to the root. All the users that remain in the group must update their
keys, namely change the keys in the intersection between the path from their leaf to the
root and the path from the removed user’s leaf and the root. In particular, this means that
every remaining user learns the new root key. The new root key is then used as the new
group key. The update of the users’ keys can be done by the GC sending a single message
that contains an encryption of 2 log(n) − 1 keys. (The details of this message appear in
Appendix A and are not important for understanding the rest of this manuscript.) Improved
schemes in [3, 11] reduce this overhead to a single message with log(n) encryptions of keys,
i.e. with total length of log(n)|k| bits.

If backward secrecy is required then a join operation in the LKH scheme is similar to a
remove operation in the sense that the keys that the joining user receives must be different
than the keys previously used in the system. This is required in order to prevent the joining
user from learning previous messages that were sent to group encrypted with the group key
(it is not sufficient to change only the root key because other keys in the path might have
been used in previous revocation messages to encrypt the root key itself or information that
reveals it). The joining user is assigned a leaf, and all the keys in the path from this leaf
to the root must be updated, using the same method and the same overhead as in user
deletion.

3

1.2 The State Update Problem

The LKH method is quite efficient: each user has to keep a personal key with log n keys, i.e.
of length log(n)|k| bits, and the length of a key update message is also log(n)|k| bits. The
main drawback of the basic LKH method and its variants is the requirement that group
users update their state whenever users join or leave the group. Suppose that t users join
or leave the group and that a user was offline when these updates took place. This user
must now update the keys in the path from its leaf to the root in order to be able to process
future update messages. If the user also needs to decrypt content that was sent during the
period it was offline, it must also learn the t group keys that were in effect during that
period. The straightforward way for the user to learn this information is for it to receive
and process all t key update messages. The total length of these messages is t log(n)|k| bits.
Typical values for these parameters are, say, n = 1, 000, 000, t = 1000, and |k| = 128. In
this case the total overhead is about 2, 500, 000 bits. The computation overhead is almost
always negligible, since it only involves efficient “private key” cryptographic operations.

The LKH method was suggested in the context of secure multicast, that builds secure
communication on top on the Internet’s multicast layer. In that context the state update
problem must be addressed since multicast communication is lossy and therefore the key
update messages might not be received by all users.

The state update problem might be even more relevant in a digital rights management
setting. Users might be offline most of the time. Content can be delivered to them separately
from the rules and cryptographic keys that enable its use. The content itself can be delivered
in different channels such as a webcast, web servers, a peer-to-peer network, or in static
devices such as CDs, DVDs, or other similar types of media. The rules are typically delivered
to users when they connect directly with servers, such as the GC. In this setting it is natural
that users do not have continuous communication with the GC, but rather contact it from
time to time. Users might acquire content while being disconnected from the GC (e.g. by
users “beaming” music from one device to the other), and when they connect with the GC
they should obtain keys that enable access to that content2. Since key updates might occur
frequently, it is reasonable to assume that during the period in which a user is offline there
are several updates to the group key. Once the user is online again it should get the group
keys that were used since the last time it was connected.

We reduce the overhead of users who were offline and need to update their state. Namely,
the overhead of learning the group keys that were sent in key update messages which were
not received, and also updating the personal keys.

This task can be accomplished by a “universal” solution that applies to all users. For
example by making all the key update messages of the LKH scheme available on a web site
or constantly retransmitted, or by using one of the stateless methods of [10] and attaching
a header to every message (or posting the header on a web site).

We are able to make the update data much shorter by using a different update message
per user, depending on the period during which the user was offline and the content which
it is allowed to receive. In particular, the personal key of every user contains only log n keys
as in the LKH scheme, and the update message is of length O(log t) keys.

2“Beamed” content might have a rule that enables it to be used a few times for free, but require that a
user should get a key from the GC in order to use the content more times.

4

1.3 Contributions

We address the problem of making state updates as efficient as possible, mostly from the
perspective of the communication between the GC and the user. Consider a group U in
which there are n users, that uses the LKH scheme for key management. Consider now a
user u who was offline during a period in which t users were removed from the group. The
length of a key is |k|. The trivial state update message contains all the key update messages
that were sent during the t key updates, and its length is t log(n) keys or t log(n)|k| bits. A
naive analysis of the run time reveals also that given this message the user should perform
O(t log(n)) decryptions in order to update its state.

The first trivial improvement is to note that after being offline there is no need for the
user to learn the actual key update messages. The information that it should learn consists
of the group keys that were used while it was offline, which are needed in order to decrypt
messages that were sent when these keys were in effect, and the current keys of the nodes
in the path from the user’s leaf to the root, which are required in order to process future
key update messages. The total is t group keys, and log(n) node keys, which can be sent in
a message of length t + log(n) keys (this message is directed to a specific user, rather than
being a universal message that can be used by all users).

In the rest of the paper we present additional improvements:

• Group keys can be generated in a method that enables a concise representation of a
sequence of consecutive keys. This enables a list of t consecutive keys to be sent using
a shorter message. Namely,

– t consecutive keys can be sent using a message of length O(1) keys (2|k| bits).
This method is insecure against collusions between users.

– t consecutive keys can be sent using a message of length O(log t) keys (2 log t|k|
bits). This method is secure against collusions between any number of users.

• We observe that not all the keys in the path from the user’s leaf to the root are changed
by the update messages, but rather only keys that intersect with the paths from
the leaves of deleted or joining users. A probabilistic analysis shows that with high
probability only O(log t) of the log n keys in the path should be updated. Similarly,
the expected number of keys that have to be changed is log(t) + log log(n/t).

To sum up, the communication overhead of updating the state of a user which was
offline during t key updates is reduced, with high probability, from O(t log(n)|k|) bits to
O(log t|k|) bits. If we do not care about security against collusions of users then this
overhead is composed of O(log t|k|) bits for updating the path, and O(|k|) for sending old
group keys. If security against user collusions is required, the overhead is O(log t|k|) bits
for each of these tasks.

1.4 Related Work

User revocation schemes can be traced back to the broadcast encryption scheme of Fiat
and Naor [5]. This system enables the removal of any number of users as long as a limited

5

number of them collude (the number of colluding users must be smaller than a system
parameter which affects the overhead).

The Logical Key Hierarchy scheme (LKH), which was suggested independently by Wall-
ner et. al [16] and Wong and Lam [17], enables to revoke any number of users with security
against any number of colluding users. The motivation for this scheme was providing se-
curity for multicast groups. Since the scheme requires users to change their keys (state)
whenever other users leave or join the group, the users must be connected most of the time.
The communication overhead of the LKH scheme was improved in [3, 11] by a factor of 2
(see discussion in Appendix A), and a better join mechanism was suggested in [15].

In the information theoretic scenario, Luby and Staddon [9] provide lower bounds for any
revocation algorithm. Kumar et. al [7] design a one-time revocation system for removing s
users in which the message length is O(s log n) and the length of the personal key is O(s2)
and does not depend on n. Since this system is good for a single revocation the question
of updating the user’s state does not exist. Other, more efficient systems for one-time
revocation, based on polynomial interpolation, were by suggested Anzai et. al [1] and Naor
and Pinkas [12]. In these schemes the length of the revocation message is s keys and the
personal key contains only a single key. The scheme of [12] can be generalized for many
revocations, and provides traitor tracing capabilities.

The MARKS system [2] is a key assignment method that addresses multicast scenarios
in which premature removal of users is rare and it is known in advance what content each
user is allowed to obtain. It is assumed that in these scenarios there is no need for revocation
messages. It is further assumed that users subscribe in advance for a sequence of consecutive
“content” events, e.g. for a pay-TV movie (which is composed of consecutive minutes). Fine
granularity is achieved by dividing time into short “application data units”, ADUs, (e.g. an
ADU being a minute of a video) and providing a different key for every ADU. A user should
receive the keys of the ADUs which it is entitled to use. The key assignment to ADUs is
done using the same method we suggest in Section 2.2 (however, no proof of security or
rigorous complexity analysis is given in [2]). A more general tree based construction is
presented at [18].

A recent approach taken by Naor, Naor and Lotspiech [10] is to design a system in which
users can be completely stateless. That is to say that users do not have to change their
personal data when revocations or joins take place. Instead of requiring users to change
their state, the GC attaches to each message a header which depends on the list of active
users, and enables only these users to decrypt the message (the header information is similar
to the list of key update messages that must be available to all users at all times if the LKH
scheme is used). They suggest two new key update algorithms, which require each user to
store a personal key of log n and 1

2 log2 n keys, respectively. After t key updates the length
of the header information is t log n and t keys, respectively. The second scheme is very
efficient in terms of the length of the header information, which does not even depend on
n, at the cost of increasing the length of the personal key. (Note however that the overhead
analysis of this scheme requires n to be an upper bound on the number of users throughout
the lifetime of the system.)

6

2 A Concise Representation of Keys

Let us denote the group key that is used between the key updates i and (i+1) as ki. A user
which did not receive the t key update messages numbered i, i+1, . . . , j, where j− i = t−1,
must learn keys ki, . . . , kj in order to decrypt content that was sent during these periods.
This can be trivially achieved using a message containing these t keys. We show below two
methods of reducing this overhead to two keys and O(log t) keys, respectively.

The methods described in this section can be used in more general scenarios. They
enable to generate n pseudo-random keys in a way that enables short representations of any
subset of successive keys, while preserving the pseudo-randomness of the other keys.

2.1 A Method with No Security Against Collusions

Let N be a predefined constant (say, N = 10, 000), and let F be a pseudo-random generator
with input length of |k| bits and output length of 2|k| bits. The system uses a seed of length
2|k| bits that can be used to send update messages for N key updates. Afterwards new
seeds should be generated.

The system operates in the following way. The GC chooses in advance two seeds, L1

and RN , each of length k. Denote by F0(x) and F1(x) the left and right halves of the output
of F . The GC defines the following values

Li = F0(Li−1) i = 2, . . . , N (1)
Ri = F0(Ri+1) i = N − 1, . . . , 1 (2)
ki = F1(Li)⊕ F1(Ri) i = 1, . . . , N (3)

The key ki is used as the group key after the ith key update3. Note that given Li and Rj ,
with i < j, one can compute all the keys ki, . . . , kj . The update message to a user that
did not receive key update messages i through j consists therefore of Li and Rj alone, is of
length 2|k| bits, and enables the user to compute ki, . . . , kj .

The following lemma states that given a pair of keys 〈Li, Rj〉 (and no other L or R
values), the set of keys {k` |` 6∈ [i, j]} which are generated by this scheme is pseudo-random.
The lemma is used to prove a theorem stating that a user that receives 〈Li, Rj〉, and might
know the values of some other keys k` with ` 6∈ [i, j], does not learn anything about other
keys which are not in [i, j].

Lemma 1 Given only Li and Rj, with i < j, the set of keys k`, ` 6∈ [i, j] is pseudo-random.

Proof: The proof uses a standard hybrid argument. Suppose that it is possible to dis-
tinguish between the keys {k` | ` 6∈ [i, j]} and a random sequence. Namely there is a
distinguisher (i.e. a probabilistic Turing machine) for which there is non-negligible differ-
ence (denoted by δ) between the probability that the distinguisher outputs 1 in each of
these cases. We can then construct a distinguisher between the output of F and random
values. Our distinguisher is given a pair (x0, x1) which is either F (y) for a randomly chosen
y, or a random 2|k| bit string.

3In the improvement of LKH described in [3, 11] the root key is defined by a different method and cannot
be set to an arbitrary value. Therefore, the root key should be used to encrypt ki, which should be used as
the group key.

7

Suppose first that j = N . We construct N − t hybrids. Hybrid H` (for 1 ≤ ` ≤ i) is
defined in the following way:

• Set k1, . . . , k`−1 to random values.

• Set L` to a random value.

• Set RN to a random value, and define all other keys using L` and RN .

The distribution of keys (k1, . . . , ki−1) in H1 is identical to that generated by the con-
struction, whereas the distribution of these keys in Hi is random. The difference therefore
between the probability that the user outputs 1 given H1 and given Hi is δ. This means
that there is an 1 ≤ ` < i for which the difference between the probabilities associated with
H` and H`+1 is at least δ/(N − t) and is non-negligible. Our distinguisher algorithm for F
picks a random location 1 ≤ `′ < i, and performs the following operations:

• Sets k1, . . . , k`′−1 to random values.

• Sets L`′+1 to x0, and defines Ls for s > `′ + 1.

• Sets RN to a random value, and defines Rs for `′ ≤ s < N .

• Sets k`′ to x1 ⊕R`′ .

• For `′ + 1 ≤ s ≤ N defines ks = Ls ⊕Rs.

With probability at least 1/(N − t), `′ = ` for which the difference in probabilities is
δ/(N − t). Therefore our distinguisher succeeds with probability at least δ/(N − t)2.

Assume now that j < N and i > 1. The argument used above can be used with hybrids
ranging over all the locations ` 6∈ [i, j] and yields the same result. 2.

Theorem 1 Given Li and Rj, with i < j, any set P of indices (P ⊆ [1, i−1]∪ [j +1, N]),
and the keys {ks | s ∈ P}, the set of keys {k` | ` 6∈ P ∪ [i, j]} is pseudo-random.

Proof: We show that if the theorem does not hold then neither does lemma 1.
Suppose that the theorem does not hold. Then there is a distinguisher D that receives

as input the following values:

• Indexes i, j and values Li, Rj .

• A set of keys {k` | ` 6∈ [i, j]}
• A set of indexes P , and an assurance that the keys {k` | ` ∈ P} were generated

according to the construction.

Define T as the set of indexes that are not in P or in [i, j]. The algorithm is able to
distinguish between the event that the keys indexed by T are random, and the case that
they were generated according to the construction.

Assume that we are given an input instance to the distinguishing problem defined in
lemma 1. Namely, indexes i, j and values Li, Rj , and a set of keys T = {k` | ` ∈ [1, i −
1] ∪ [j + 1, N]}. We should distinguish between the case that the keys in T were generated
according to the construction (event C), and the case that they are random (event R).

Define two experiments:

8

• T1: Pick a random set P of indexes not in [i, j]. Feed the input and P to the
distinguisher D.

• T2: Pick a random set P of indexes not in [i, j]. Replace the keys {k` | ` 6∈ [i, j] ∪ P}
with random values. Feed the input and P to the distinguisher D.

Define QC,T1 as the probability that D outputs 1 in experiment T1 given event C. Define
QR,T1 as the probability that D outputs 1 in experiment T1 given event R. Similarly, define
QC,T2 and QR,T2.

Since we assume the theorem not to hold, QC,T1 is far from QC,T2. It is also obvious
that QR,T1 = QR,T2, since in both cases the keys not in [i, j] are random.

It therefore cannot be the case that both of the following two events happen: QC,T1 is
close to QR,T1, and QC,T2 is close to QR,T2. Assume, without loss of generality, that QC,T1

is far from QR,T1. Then T1 is a distinguisher that contradicts lemma 1. 2

The method suggested here is not immune to collusions between two corrupt users
receiving update messages. For example consider user A which paid for content during
times [1, 100] and user B which paid for content during times [201, 300]. Suppose now that
user A was offline during times [50, 70], and user B was offline during times [250, 270]. User
A contacts the GC and receives L50 and R70, and user B contacts the GC and receives
L250 and R270. Now the two users can use L50 and R270 together to compute the keys
k50, . . . , k270. In particular, they can compute the keys k101, . . . , k200 which neither of them
is entitled to receive. The same attack can also be run by a single user that receives two
update messages (e.g. consider the above example with A and B being the same user who
did not pay for receiving the content during times [101, 200]). For this reason the scheme
must not send two or more updates to a single user, if between two periods in which the
user was offline there is a period in which it is not entitled to obtain the group keys.

The communication overhead of the method consists of an update message that contains
two keys, namely of length 2|k| bits, as long as the sequence of keys that the user should learn
is within a single “block” of keys (i.e. generated from the same seeds). If the sequence of
keys contains keys from c blocks, then the communication overhead is 2c|k| bits. (However,
if n is sufficiently long then c is typically very small, i.e. c = 1 or 2.)

2.2 A Method Secure Against Collusions

The following key generation method supports short update messages which are secure
against collusions of any set of corrupt users. Let N be a predefined constant which is a
power of 2 (say, N = 220). The method enables to generate N group keys (of length |k|
bits each) while enabling to compute any t consecutive keys from at most O(log t) values of
length |k| each. If the GC generates the group using this method then a user which does
not receive t key update messages can receive a message of length O(log t) keys from the
GC and use it to reconstruct the t group keys that were sent in the key update messages.

The keys are generated in the following way (similar to the Goldreich-Goldwasser-
Micali [6] or the Naor-Reingold [13] constructions of pseudo-random functions).

• Let F be a pseudo-random generator with input of length |k| bits and output of length
2|k|, and denote by F0(x), F1(x) the left and right halves of the output of F for an
input x.

9

• Imagine a full binary tree of depth log(N) which has N leaves. The GC chooses a
random key of length |k| for the root node, and defines a key for every other node
of the tree in the following way, going from the root down: Let v be a node, and
let v0, v1 be its two sons. Denote by kv the key of node v. Then kv0 = F0(kv) and
kv1 = F1(kv).

• The key of the ith leaf is used as the group key after the ith key update.

The construction ensures that a key of a node v enables to compute the keys of all the
leaves of the subtree rooted in v, using the same key computation method that was used in
the initial generation of the tree. (Generating the keys in the leaves of the subtree requires
keeping at most log n internal key values in memory, and doing an amortized computation
of O(1) applications of F per key.) The following theorem states that this key generation
method is secure.

Theorem 2 Given any set S of leaves, and the values of the keys of a set of nodes R (either
internal nodes or leaves) such that S is exactly the union of the leaves of the subtrees rooted
by nodes in R, the values of the other nodes of the tree are pseudo-random.

Proof: The proof is based on the proof of the pseudo-randomness of the GGM construction
in [8]. Assume that there is a distinguisher that distinguishes between the values of the
leaves of the tree and random values, and construct an adversary that distinguishes between
the output of the pseudo-random generator F and random values, based on queries that it
makes to values of leaves of the tree.

The adversary is given a pair of values (x, y) and it should distinguish between the
case that they are the output of F , and the case that they are random. The adversary
constructs a full binary tree, chooses a random value to its root and sets the values of the
nodes according to the construction described above. Define S′ as the set of nodes in R,
their ancestors and their descendants (namely nodes in the paths from R to the root, and
nodes in subtrees rooted by nodes in R). The values of the nodes in S′ are then fixed and
will not be changed. The set S of leaves is exactly the set of leaves in S′.

The values of the other nodes are defined during the interaction with the distinguisher,
based on a hybrid construction, as in the proof in [8]. During the interaction the distin-
guisher asks for the values of different leaves. In order to compute a value of a leaf, the
values of the nodes in the path from the root to the leaf must be computed, if they were
not computed before.

A node is defined as “marked” if it is in S′, or its value was computed in a previous step
of the interaction. The ith hybrid is defined by (1) providing the values for the first i − 1
unmarked nodes according to the construction, (2) defining the values of the descendants of
the ith unmarked node to be (x, y), (3) providing random values for the other marked nodes.
(Note that the order of the nodes is defined by the queries to leaf values that are made in
the interaction. This order might be different in different interactions. Furthermore, the
value of a leaf that is provided in the interaction might affect the order of the nodes which
are unmarked at that stage.)

The number of hybrids is bounded by N . The last hybrid is the tree defined by the
construction, and therefore the probability that the distinguisher outputs 1 given this hybrid

10

is equal to this probability in the case the tree is built according to the construction. In the
first hybrid all leaves except those in S have random values, and therefore the probability
that the distinguisher outputs 1 given this hybrid is the same as if the tree (except the leaves
in S) is random. Therefore if the difference between these two probabilities is δ, there is a
hybrid which distinguishes between the output of the generator and a random value with
probability at least δ/(2N). 2

The key update method: Consider a user which did not receive the messages of t
successive key updates and needs to learn the keys of the t successive leaves which were
associated with the group keys sent in these key updates. Denote this set of leaves as S. In
order to enable the user to learn these keys it is sufficient to provide it with the keys of a
minimal set R of nodes, such that S is exactly the union of the leaves of the subtrees rooted
by the nodes in R. The GC should therefore send to the user the keys of the nodes in R,
and the user can use these keys to compute the group keys.

Theorem 3 proves, using an inductive argument, that for every sequence S of t successive
leaves there is such a set R of at most O(log t) nodes. The length of the message sent to
the user is therefore O(log(t)|k|) bits.

In order to analyze the size of R we first prove the following lemma. (The same lemma
is also widely used in computational geometry, see e.g. [4, 14].)

Lemma 2 Let T be a complete binary tree with N = 2n leaves. Then given any set S of
consecutive leaves, there is a set R of at most 2n− 2 nodes such that S is exactly the union
of the leaves of the subtrees rooted by the nodes in R.

Proof: The proof is by induction. Let Ti be a complete binary tree with 2i leaves. Define
the following two values for Ti:

• Ri is the maximum, taken over all sets S of consecutive leaves, of the size of the
minimal set of nodes R such that S is exactly the union of the leaves of the subtrees
rooted by the nodes in R.

• Ei is defined in a similar way, but taking the maximum over all sets S that contain
either the leftmost or the rightmost leaf of Ti. Namely, Ei is the maximum, taken
over all sets S of consecutive leaves that contain the leftmost or the rightmost leaf of
Ti, of the size of the set of nodes R such that S is exactly the union of the leaves of
the subtrees rooted by the nodes in R.

It holds that

Ri = max(Ri−1, 2Ei−1) (4)
Ei = max(Ei−1, Ei−1 + 1) = Ei−1 + 1 (5)

Equation 4 holds since there are only two options for the sequence S that maximizes Ri:
If it is contained in one half of the tree (e.g. in the left half rooted by the left son of the
root of Ti) it is actually a sequence of leaves in a tree of depth i − 1 and the number of
nodes in R is bounded by Ri−1. If S is contained in both halves of the tree, it is a union of
two sequences in two trees of depth i− 1, where each of these sequences contains either the
leftmost or the rightmost leaf of its subtree. The size of R is then bounded by 2Ei−1.

11

Equation 5 holds since the sequence S that maximizes Ei is either contained in one half
the tree (in which case the size of R is bounded by Ei−1), or contains one half of the tree
and in addition a sequence of leaves from the other half. In this case R contains the root
of the first half, and at most Ei−1 additional nodes.

For a tree of depth 1 (namely with two leaves), R1 = E1 = 1. It therefore holds that

Ri = 2Ei−1 = 2i− 2 (6)
Ei = i (7)

This proves the lemma. (Note that if instead of using a binary tree the tree has more
descendants per node, the overhead increases.) 2

The lemma provides the same bound for any sequence S regardless of the number of
leaves it contains. The following theorem provides a bound which depends on |S|.
Theorem 3 Given any set S of t consecutive leaves in a complete binary tree, there is a
set R of at most 2blog(t)c + 1 nodes such that S is exactly the union of the leaves of the
subtrees rooted by the nodes in R.

Proof: Let N = 2n be the number of leaves in the tree. Let r = blog(t)c, namely the
largest power of 2 which is not greater than t. We consider the tree as a collection of N/2r

subtrees of depth r, with 2r leaves in each subtree.
Since it holds that t/2 < 2r ≤ t the sequence of leaves in S can span at most three

consecutive such subtrees. The leaves of the inner subtree are completely contained in S,
whereas some or all of the leaves of the outer subtrees are contained in S. Applying lemma 2,
the number of nodes that cover the leaves in S is at most Er+1+Er = 2r+1 = 2blog(t)c+1.

2

3 Updating Keys on the Path from a Leaf to the Root

The fact that a user is offline during t key updates does not necessarily mean that all the
keys in the path from the user’s leaf to the root were changed by the key updates. In
fact, if the locations of the users that are leaving or joining are random, then for each key
update there is a 1/2 chance that only the root key is affected, a 1/4 chance that two
keys on the path to the root are affected, and in general a 1/2i chance that i keys on that
path are changed. (The assumption of random revocation locations is justified if the system
associates users with leaves at random, and we assume that users are revoked independently
of the location to which they were mapped in the tree.)

The update message from the GC to the user should contain only the keys that need to
be updated, rather than all the log n keys in the path from the user’s leaf to the root. In
this section we prove the following theorem:

Theorem 4 For any user, after t key updates of random leaf keys using the LKH protocol,

• It holds with high probability that log t + O(1) keys need to be updated, and

• The expected number of keys that have to be updated is log(t) + log log(n/t) + O(1).

12

Proof: Fix a certain leaf (the leaf of the user who was offline), and assume that the
key updates are applied to randomly chosen users. The probability that the intersection
between the path from the user to the root, and the path from an updated key to the
root, contains exactly i nodes is 2−i. This is also the probability that the length of the
intersection is strictly greater than i.

Considering t key updates, the probability that the intersection with all the paths from
the leaves of the updated keys are of length at most `, is (1 − 2−`)t. Setting ` = log t + c,
yields that the probability of an intersection of length at most ` is (1− 2−`)t = (1− 1

t2c)t ≈
e−2−c ≈ 1−2−c. In particular, ` = log t+2 yields a probability of (1− 1

4t)
t = 0.78. Similarly

setting ` = log t + 3 and ` = log t + 4 yield probabilities of 0.88 and 0.94, respectively. The
length of the intersection is therefore greater than log t + 4 nodes with probability at most
6%.

As for the calculation of the expected length of the intersection, let us again set ` =
log t + c, where c is a parameter whose value we will define below. The probability that all
the t intersections are of length ` or less is (1 − 2−`)t = (1 − 1

t2c)t = e−2−c
. The expected

length of the intersection with all paths is therefore bounded by

(log t + c) · e−2−c
+ log n · (1− e−2−c

).

Assuming that 2c is large, we can use the following approximation

≈ (log t + c) · (1− 2−c) + log n · 2−c

= log t + c + 2−c log(n/t)− 2−cc

Setting c = log log(n/t) cancels out the third element and reveals that the expectation is
log t + log log(n/t) + O(1). This is therefore the expected length of the update message.

2

Acknowledgments

We would like to thank Michael Atallah and Bernard Chazelle for referring us to the com-
putational geometry origins of lemma 2.

References

[1] J. Anzai, N. Matsuzaki and T. Matsumoto, “A Quick Group Key Distribution Scheme
with Entity Revocation”, Adv. in Cryptology – Asiacrypt’99, Springer-Verlag LNCS
1716 1999, pp. 333–347.

[2] B. Briscoe, “MARKS: Zero side effect multicast key management using arbitrarily re-
vealed key sequences”, Proc. First International Workshop on Networked Group Com-
munication (NGC’99), 1999.

[3] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, “Multicast Secu-
rity: A Taxonomy and Some Efficient Constructions”, In Proc. INFOCOM ’99, Vol. 2,
pp. 708-716, New York, NY, March 1999.

13

[4] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg,
Germany, 1987.

[5] A. Fiat and M. Naor, “Broadcast Encryption”, Adv. in Cryptology – Crypto ’93,
Springer-Verlag LNCS vol. 773, 1994, pp. 480–491, 1994.

[6] O. Goldreich, S. Goldwasser and S. Micali, “How to construct random functions”, J. of
the ACM, Vol. 33, No. 4, 1986, pp. 792-807.

[7] R. Kumar, S. Rajagopalan and A. Sahai, “Coding constructions for blacklisting problems
without computational assumptions”, Adv. in Cryptology – Crypto ’99, Springr-Verlag
LNCS 1666, pp. 609–623, 1999.

[8] M. Luby, Pseudorandomness and Cryptographic Applications, Princeton Computer Sci-
ence Notes, 1996.

[9] M. Luby and J. Staddon, “Combinatorial Bounds for Broadcast Encryption”, Adv. in
Cryptology – Eurocrypt ’98, Springer-Verlag LNCS 1403, 1998, pp. 512–526.

[10] D. Naor, M. Naor and J. Lotspiech, “Revocation and tracing schemes for stateless
receivers”, Adv. in Cryptology – Crypto ’01, Springer-Verlag LNCS 2139, 2001, pp. 41–
62.

[11] D. McGrew, A. T. Sherman, “Key establishment in large groups using one-way function
trees”, IEEE Transactions on Software Engineering, vol. 29, no. 5 (May 2003), 444-458.

[12] M. Naor and B. Pinkas, “Efficient Trace and Revoke Schemes”, Proceedings of Financial
Crypto ’2000, February 2000.

[13] M. Naor and O. Reingold, “Number-Theoretic constructions of efficient pseudo-random
functions”, Proc. 38th IEEE Symp. on Foundations of Computer Science, 1997, pp. 458–
467.

[14] F.P. Preparata and M.I. Shamos, Computational Geometry: an Introduction, Springer-
Verlag, New York, 1985.

[15] M. Waldvogel. G. Caronni, D. Sun, N. Weiler and B. Plattner, “The VersaKey Frame-
work: Versatile Group Key Management”, IEEE Journal on Selected Areas in Commu-
nications, Vol. 17, No. 9, Sep. 1999, pp. 1614–1631.

[16] D. M. Wallner, E. G. Harder and R. C. Agee, “Key Management for Multicast: Issues
and Architecture”, RFC 2627, June 1999.

[17] C. K. Wong, M. Gouda, and S. S. Lam, “Secure Group Communications Using Key
Graphs”, Proc. of SIGCOMM ’98, pp. 68–79.

[18] A. Wool, “Key Management for Encrypted Broadcast”, ACM Trans. on Information
and System Security, Col. 3, No. 2, 2000. pp. 107–134.

14

A The LKH Scheme

Tree based group rekeying schemes were suggested by Wallner et. al [16] (who used binary
trees), and independently by Wong et. al [17] (who considered the degree of the nodes of
the tree as a parameter). We concentrate on the scheme of [16] since binary tress require
a smaller communication overhead per user revocation. When this scheme is applied to a
group of n users it requires each user to store log n+1 keys. It uses a message with 2 log n−1
key encryptions in order to delete a user and generate a new group key. This process should
be repeated for every deleted user. The scheme has better performance than the Fiat-
Naor [5] scheme when the number of deletions is not too big. It is also secure against any
number of corrupt users (they can all be deleted from the group, no matter how many they
are). A drawback of the scheme is that if a user misses some control packets relative to a
user deletion operation (e.g., if it temporarily gets disconnected from the network), it needs
to ask for the missed control packets. This also applies for a user who misses join operations
if the scheme is set to support backward secrecy.

We now describe the scheme of [16]. Let u0, . . . , un−1 be n members of the group (in
order to simplify the exposition we assume that n is a power of 2). They all share a group
key k with which group communication is encrypted. There is a single group controller,
which might wish at some stage to delete a user from the group and enable the other
members to communicate using a new key k′, unknown to the deleted user.

The group is initialized as follows. Users are associated with the leaves of a tree of
height log n (see Figure 1). The group controller (GC) associates a key kv with every node
of the tree, and sends to each user (through a secure channel) the keys associated with the
nodes along the path connecting the user to the root. For example, in the tree of Figure 1,
user u0 receives keys k000, k00, k0 and k. Notice that the root key k is known to all users
and can be used as the group key and encrypt group communication.

In order to remove a user u from the group the GC performs the following operations.
For all nodes v along the path from u to the root, a new key k′v is generated. New keys
are encrypted as follows. Key k′p(u) is encrypted with key ks(u), where p(u) and s(u) denote
respectively the parent and sibling of u. For any other node v along the path from u to the
root (excluded), key k′p(v) is encrypted with keys k′v and ks(v). All encryptions are sent to the
users. For example, in order to remove user u0 from the tree of Figure 1 the following set of
encryptions is transmitted (see Figure 2): Ek001(k

′
00), Ek′00(k

′
0), Ek01(k

′
0), Ek′0(k

′), Ek1(k
′). It

is easy to verify that each user can decrypt only the keys it is entitled to receive. If backward
secrecy is required then a user join operation is similar to user removal (see Section 1.1).
The update of the keys in the path from the leaf of the joining user to the root is performed
in a similar manner to the key update in the case of user removal.

15

U1 U2 U3 U4 U5 U6 U7

K001 K010 K011 K100 K101 K110 K111

K11

K1

K10K01
E(K001,K’00)

E(K01,K’0)
E(K’00,K’0)

E(K’0,K’)
E(K1,K’)

K’

K’00

New group key

K’0

Figure 2: The delivery of new values to the keys surrendered to u0.

16

