
Firm Grip Handshakes: a Tool for Bidirectional

Vouching

Omer Berkman∗ Benny Pinkas† Moti Yung‡

Abstract

Clients trust servers over the Internet due to their trust in digital signatures of certifica-
tion authorities (CAs) which comprise the Internet’s trust infrastructure. Based on the recent
DigiNotar attack and other attacks on CAs, we formulate here a very strong attack denoted
“Certificate in The Middle” (CiTM) and propose a mitigation for this attack. The solution is
embedded in a handshake protocol and makes it more robust: It adds to the usual aspect of
“CA vouching” a client side vouching for the server “continuity of service,” thus, allowing clients
and server to detect past and future breaches of the trust infrastructure. We had simplicity,
flexibility, and scalability in mind, solving the problem within the context of the protocol (with
the underlying goal of embedding the solution in the TLS layer) with minor field changes, min-
imal cryptographic additions, no interaction with other protocol layers, and no added trusted
parties.

1 Introduction

August 2011 presented a wakeup call for Internet security, when it was revealed that an unidentified
attacker hacked into the computers of DigiNotar, a Dutch CA, and issued a fraudulent certificate
for, among others, google.com. This certificate was subsequently used in a Man-in-the-Middle
attack deployed against users in Iran. The certificate fooled browsers into assuming that they were
encrypting data with a public key assigned to Google, where in fact they were using a public key
chosen by the attacker. As a result, users’ data, including their Gmail credentials such as their
passwords and cookies, was revealed to the attacker.

The attack was possible since “trust” is assumed to operate “top down”. Namely, the normal
way for browsers to operate, based on the SSL/TLS protocol, is to trust any assertion made by a
certificate authority (CA) that is trusted by the browser. In most cases this means that any CA
whose key is preinstalled with the browser is trusted. The attack was identified since the Google
certificate was “pinned” in the Chrome browser. Namely, its value was hardcoded in the browser,
and the browser was not willing to accept certificates for Google (the browser’s manufacturer)
except from a very small number of CAs [10] (incidentally, this technology was deployed a mere
two months before the attack). As a result, a suspicious user noticed the error and posted the
rogue certificate on the web, and subsequently the certificate was identified as a fake one.
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In the days that followed, it was revealed that the attackers issued hundreds of certificates for
different high-importance web services, such as Google, Yahoo, Skype, Facebook, Microsoft Win-
dows Update services and the anonymous communication system Tor, as well as some intelligence
agencies. It was also revealed that DigiNotar knew of the breach more than a month before the rogue
certificate became public, but has not notified anyone about it. Consequently, the root certificates
of DigiNotar were revoked from all major browsers and the company went out of business [19, 1].

The goal of this work is to mitigate attacks like the one described here, by fundamentally
changing the notion of trust over the web. This is done by adding a “bottom-up” component
allowing clients to vouch for the server’s trustworthiness: following the first server-client handshake,
the client has a cross-session “firm grip” on the server. The goal is to add this property with
relatively small efforts and modifications, and yet to achieve a much more robust authentication
for the typical client-server web interactions (i.e., via a modified SSL/TLS protocol).

1.1 The Current Trust Infrastructure and Our Goals

The web’s trust infrastructure based on its early days’ need to bootstrap trust in an essentially
unlimited number of sites from an initial trust in a limited number of CAs. The trust model is
built top-down (reflecting on the CA infrastructure and X.509 standards). The core idea is that
each browser ships with the public keys of a limited number of root CAs, and subsequently trusts
a public key presented by a web site if it is accompanied by a certificate chain leading to the public
key from one of the root CAs. Over the years, the number of CAs trusted by browsers became very
large: more that 650 organizations, located in 52 countries, were identified as valid CAs for Mozilla
or Microsoft browsers [7, 5]. It is likely that some of these CAs suffer from security vulnerabilities
or are not managed properly. Indeed, earlier in 2011 an attacker obtained bogus certificates from
Comodo, a major CA, but no actual attack using these certificate was identified in the wild [20].

The threat that the current infrastructure poses to users is very serious. It is sufficient for
an attacker to forge certificates from a single “trusted CA” in order to apply Meet-in-the-Middle
(MiTM ) attacks to all web sites in all jurisdictions (with the help of phishing, malware or DNS
contamination). This situation, allowing a very local exposure to potentially affect the web globally,
is a colossal failure of the trust infrastructure from a risk managemnt perspective. 1

Toward our goals, let us define the attack we aim to prevent, which we denote as the “certificate
in the middle” (CiTM) attack. It is modeled after the DigiNotar incident, and is stronger than a
man in the middle (MiTM) attack since it assumes that the attacker can both mount an active
attack (e.g., by controlling the Domain Name System) and forge arbitrary valid certificate chains.

Definition 1.1 (CiTM attack). A “certificate in the middle” (CiTM) attack is an attack by an
adversary with the following capabilities:

• It can eavesdrop on any communication channel (in particular, to communication between the
client and server).

• It can change messages that are sent on any communication channel.

1Indeed, it is very hard to come up with a set of policies defining a “normal” usage of CAs and certificates, and any
such policy will result in many false warnings. We do not suggest to use such a policy, but rather use this situation
to exemplify that the current trust model is very flawed and must be fixed.
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• It can generate arbitrary valid certificate chains. In particular, the adversary can generate
a certificate which states that a certain public key (for which the adversary knows the corre-
sponding private key) is the public key of a different party.

Being polynomial-time bounded and deprived of access to secure private memories, the adversary
cannot, however, learn the private keys of specific parties. In particular it does not know the private
keys of the server which it tries to attack.

The current web trust infrastructure is completely vulnerable to CiTM attacks since its top-
down approach assumes that all CAs are trusted, whereas the CiTM attacker is able to issue
certificates in the name of trusted CAs.

It is easy to verify that due to the strong capabilities of the adversary, one cannot protect
unfortunate users who have all their communication channels permanently controlled by a CiTM
attacker. These users will always receive the same certificates forged by the attacker, whereas the
server will always observe messages that will comply with whatever policy the server might have.

Have we formulated above an attack we cannot prevent? Are we at a loss here since we for-
mulated such a strong adversary? We claim that, nevertheless, there is hope for protecting users
very efficiently. This is so since not all users will be permanently under the control of the attacker.
Some clients will use uncompromised connections before they are subject to a CiTM attack, whereas
others might first be subject to the attack and then be able to connect to the server through a
legitimate channel (say, when they travel outside of the affected country or if the attacker’s infras-
tructure fails for a short period of time). Although not all users might fall into these categories, it is
important to note that, as with the DigiNotar breach, even a single educated user who notifies the
world about the attack is likely to lead to a complete revocation of the relevant CA. Furthermore,
deploying a CiTM attack requires compromising a CA, and therefore even the most determined
attackers cannot deploy the attack too many times. We thus argue that even alerting a limited
number of users to the existence of the attack can severely diminish its utility to attackers.

1.2 Contributions

We propose a concept and a framework for handshake protocols, that extends an initial handshake
and minimizes the “window of opportunity for an attack” that can be employed by the adversary.
This type of limitation is a principle in designing robust and secure systems. Specifically, our
framework uses a form of “chaining” between all protocol handshakes that are performed between
a specific client-server pair (hence we call it a “firm grip handshake”). As a result, if a client
establishes an uncompromised handshake before it is subject to a CiTM attack then the client
identifies the attack at the moment that it is attempted due to lack of chaining. Alternatively,
even if all client-server handshakes were subject to an attack, it is sufficient to have a single
uncompromised handshake in the future in order to inform the client about the attack by breaking
the chaining to the compromised certificate.

Regarding server side security, we cannot guarantee that the server identifies an attack: due to
the stateless nature of web servers, the attacker can modify all communication from the client to
look as if each interaction is the first interaction between the client and server, and therefore no
chaining with a previous handshake exists. However, by forcing attackers to resort to such behavior
we enable servers to identify attacks by examining connection statistics and attempting to use, say,
off-line anomaly detection techniques on the server’s logs; (for example, if an exceedingly large
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proportion of connections from a certain location seem to be coming from new clients, e.g., new
web browsers, then further examination of this phenomenon might be needed).

To highlight the new concepts and avoid implementation variations, we describe a high-level
conceptual version of the protocol, rather than the specifics of embedding the protocol in existing
TLS implementations (although we do discuss issues relevant to such an implementation). Our
protocol is based on two main ideas:

• Extending the initial client-server handshake by having the server choose a key that will
be used, together with the initial certificate chain, in order to MAC all future client-server
handshakes. (The MAC value can be considered part of the reconstructable state and can be
further hashed and MACed in existing fields, say in TLS).

• In order to improve scalability and retain the stateless-ness of web servers, the protocol stores
the MAC key in the client side in encrypted and authenticated “sandwich cookies”, or oreos,
rather than storing it at the server.

1.2.1 Desired properties

We suggest the following protocol properties:

• Security requirements

– Client identifying future attacks. If the initial client-server handshake is not affected by
a CiTM attacker, then any future CiTM attack is identified by the client.

– Client identifying past attacks. If the initial client-server handshake is compromised by
a successful CiTM attack, then once the client performs a handshake with the server
over an uncompromised channel, i.e., a channel whose contents cannot be changed by
the attacker, the client identifies that an attack has previously occurred.

– Server identifying irregular behavior. Any active attack will result in either the server
identifying the attack, or it identifying a usage pattern which is different than normal.

• Simplicity and flexibility. Changes required for preventing CiTM attacks must be easily
integrateable with existing protocols. The changes to the existing implementations of the
protocol must be minimal.

Changes should be applied to only one layer of the communication stack (e.g., TLS) rather
than several layers (e.g. TLS and the application which uses it). Ideally, they can be im-
plemented without changing existing standards (e.g., consist of a few added fields in existing
messages and data structures). No infrastructure changes should be required (e.g., no addi-
tional trusted parties are added).

• Scalability. The server need not keep a long-lived state for each client.

• Efficiency. The protocol requires only a few added crypto operations, preferably symmetric
key operations.

The protocol does require the server to store a single short long-lived state. In Section 3.1 we
describe how to support recovery from the server erasing this state, or from having this state being
compromised.
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1.3 Related Work

There have been several recent proposals for moving away from the current complete trust in
certificate authorities, and they all deserve credit for worthy efforts to solve this problem. One
such approach which is already deployed is the pinning of certificates in Chrome for the google.com
domain [10], which proved to be successful in the DigiNotar attack. This approach, however, cannot
scale since it requires to encode in the browser an entry for each supported domain.

In the origin-bound certificates [4] solution, the client browser generates a self-signed client
certificate in its initial handshake with the server, and passes it to the server in all future handshakes.
The server can then embed that certificate in the authentication processes, for example by storing it
in a cookie in the application layer, and use it for authentication. This project has done remarkable
work in implementing this solution as a TLS extension in the Chrome browser and in Google’s web
serving infrastructure. There are, however, some major differences between our solution and this
project: Our protocol can be implemented in the TLS layer alone, and does not require integration
with cookies served by the application layer. In addition, it identifies CiTM attacks even if they
occur before the first uncompromised interaction between the client and the legitimate server,
whereas such attacks against the origin-bound certificate solution remain undetected. A solution
implemented in [2] is similar to origin-bound certificates but employs client’s passwords available
from any browser. It allows web applications to use secrets that they share with clients, in order
to attest for the authenticity of their certificates.

The TACK Internet draft [14] describes a TLS extension that enables a server to assert the
authenticity of its public key by signing it with a server “TACK key”. TLS connections to a pinned
hostname require the server to present a TACK containing a pinned TACK key and a corresponding
signature of the TLS server’s public key. Unlike our solution, TACK enables only the client, and not
the server, to identify CiTM attacks. Another difference stems from the way TACK implements its
goal of limiting the damage from transient attacks on servers. Unlike our approach (see Section 3.1),
TACK tries to minimize the “window of attack opportunity” by using time. Specifically, it limits
the duration in which a TACK key is pinned in the client to be the minimum between 30 days and
the length of time in which this TACK key has been observed by the client. As a result, a user who,
for example, connects to his bank quite rarely, say once every 31 days, is not offered any protection
by TACK.

Another set of solutions is based on using third-party services for extending the current trust
infrastructure. For example, it is suggested in [13] to form a public auditable repository of every
publicly visible certificate. Each certificate issued must be accompanied by an audit proof, and
servers must send these proofs along with the certificates to browsers, which will then check them.
Unlike our suggestion, this solution adds a third party to the infrastructure. In addition, domain
owners must regularly monitor the public logs to ensure that no rogue certificates were issued for
their domain. This is a commendable project that will provide complete transparency of certificate
usage. Yet, this project is somewhat orthogonal to our local protocol extension approach, and
requires considerable global resources in order to be implemented and maintained. A project with
similar goals is EFF’s Sovereign Keys [6]. Another suggestion along these lines is to use DNSSEC to
bound certificates to domain names [16]. Another third-party approach is to use a notary service,
i.e. to ask a third-party observer whether it observes the same certificate as the client. This
approach was taken in [18, 15, 11].
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2 The Protocol

We give a high-level conceptual version of the protocol, which can be applied to any handshake
protocol (where embedding it in TLS and other certificate-based protocols is a major goal). All
that we assume is that the initial message in the protocol is sent from the client to the server, and
that it is possible to add fields to protocol messages. This latter assumption can be justified by
instantiating these additional fields in several ways, as we discuss in Section 2.1.

The protocol is based on two main ideas. The first idea is that in the initial handshake between
the client and server, the server chooses a fresh key, denoted as the “cream” for reasons that will
shortly become clear, and sends it to the client. (This key can be sent encrypted or in the clear;
see discussion in Section 2.1.) Later, each handshake is accompanied with MACs, keyed with this
key, of the messages seen by the parties in the handshake, as well as with hashes of the initial
certificate chain that each of the parties had received. Therefore, an attacker who does not know
the cream key will not be able to mount an active attack on future handshakes, even if it can issue
a certificate of the server. Also, if the client receives an initial certificate chain different than the
one sent by the server, then their hash values will be different and this fact will be identified in the
first uncompromised communication.

The second idea is that the server need not store a state containing the cream key. Rather,
it generates a sandwich cookie, or oreo, which contains an encrypted and authenticated envelope
over the cream key and over a hash of the initial certificate chain. The oreo is stored at the client
side and is sent by the client to the server in future handshakes. The server can then decrypt the
oreo, verify its authenticity and use the resulting key for generating MACs and verifying MACs
received from the client. We note that given the stateless nature of web servers the idea of keeping
state at users has been suggested before (perhaps for the first time in [12]), and is typically used
for providing the server with encrypted keys/states in cookies, for the server to restore keys and
common state. We describe the protocol below. Its main steps are also depicted in Figure 1.

The Basic Protocol

Long lived states: The server stores a long-lived server key, sk. This is a symmetric key and is
the only state that must be stored by the server. The client stores a “cream file”, which is defined
in the protocol below.

The protocol:

When initiating a connection to the server the client sends an additional bit, the sbit, which states
whether the client already stores a state for this server.
If sbit = 0 (no state) then

1. The server picks a random key, denoted as the “cream key”, or ck. This key is a symmetric
key chosen using fresh randomness.

2. The server computes a hash of the certificate chain that it sends to the client. Denote this
value as the server hash, sh = H(certificate chain sent), where H() is a collision intractable
hash function, for example a function from the SHA family.

3. The server uses the long-lived server key sk to generate an encrypted and authenticated
version of the cream key ck and of the server hash sh. The result is denoted as the “sandwich
cookie”, or oreo (which contains a cream filling in it).

6



4. During the handshake, or immediately afterwards, the server sends the key ck and the oreo
to the client. (See discussion in Section 2.1 on how these values can be sent, and whether
they should be encrypted or not.)

5. The client receives the cream key ck. It also computes a hash of the certificate chain that it
received. Namely, computes a client hash ch = H(certificate-chain received) using the same
function H() as the server. The values ck and ch will never be sent in the clear by the client.

The client stores a state for the server in an entry which includes the cream key ck, the client
hash ch and the oreo, and is stored in a special cream file. If all went well, the oreo contains a
server hash sh that is identical to the client hash ch. (See discussion in Section 2.1 on storing
this cream file.)

If sbit = 1 (namely, the client connects to a server for which it already has an entry in its cream
file) then

1. The client sends the oreo to the server. This is done during the handshake or immediately
afterwards. (See discussion in Section 2.1 on how this data can be sent.)

2. At the end of the handshake the client sends to the server a MAC, keyed with the cream key
ck, of the concatenation of the string “client view” to all messages seen by the client in the
handshake (messages both sent and received by the client). It also sends ch, the hash of the
certificate chain received by the client in the initial handshake. (See discussion in Section 2.1
on why this value is not included in the MAC.) We assume that the “view” (of client/ server )
is different in each interaction, and thus serves as a mechanism that prevents “replay attacks.”

3. The server decrypts the oreo and learns the cream key ck and the server hash sh of the
certificate chain sent by the server in the initial handshake. If the check of the authenticity
of the oreo fails then the server aborts and notifies its operator.

Otherwise, the server uses ck to check the MAC received from the client (namely, compute
a MAC keyed by ck of the string “client view” concatenated to the messages seen by the
server, and compare it to the MAC received from the client). It also compares the received
ch value to its own sh value. If any of these checks fails then the server aborts and notifies
its operator.

4. The server sends to the client a MAC, keyed with the cream key ck, of the string “server
view” containing the concatenation of all messages seen by the server in the handshake. It
also sends to the client the server hash sh. The client checks the MAC using the cream key
ck and compares the received sh value to the ch value (recall that ck and ch are stored in the
client’s cream file). If any of these checks fails then the client aborts and notifies the user.
(In a way similar to the message that is presented when certificate pinning is used and the
wrong certificate is received.)

Note that if the client has an entry for the server in its oreo file, then the client always expects to
receive a MAC at the end of the protocol, assuming (for now) that the MAC key is always available
at the server.
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Client Server

Server key sk

sbit = 0

Choose cream key ck
sh = H(cert chain sent)
oreo = AuthEnc(sk, ck | sh)cert chain, ck, oreo

ch = H(cert chain received)
Store ck, ch, oreo

Initial interaction

Client Server

Server key sk

sbit = 1, oreo

Verify oreo and decrypt to get 
ck, shCompute MAC keyed by ck of 

client's view

Subsequent interactions

MAC(ck, client's view), ch
Verify received MAC using ck
Compare ch to sh
Compute MAC keyed by ck of 
server's view

Verify received MAC using ck
Compare sh to ch

MAC(ck, server's view), sh

Figure 1: The basic protocol.
2.1 Comments

Sending ck from server to client. In the initial handshake the server chooses a cream key
ck and sends it to the client. It is possible to send this value encrypted or unencrypted. The
advantage in sending ck encrypted is that this prevents an adversary from learning the value even
if the adversary is able to eavesdrop on the initial handshake. The disadvantage in encrypting ck
is that encryption can only be performed after the two parties agree on a common key. Therefore
an encrypted ck can only be communicated in the last message sent by the server in the hand-
shake protocol (the server-finished message in TLS), or immediately after the handshake. This
might complicate the implementation, as well as its integration with the existing protocol and the
applications using it.

Note that the only advantage in encrypting ck is against an adversary that at the time of the
initial interaction has capabilities which allow it to eavesdrop on the first handshake, but do not
enable it to forge a server certificate or mount an active attack. Yet at a later time the adversary
has the full capabilities required for mouting a full CiTM attack. The decision about whether to use
encryption depends on whether one expects to encounter adversaries with this set of capabilities.

Sending separately the hash of the certificate chain. The last steps of the protocol have
each party send to the other party a MAC of its respective view, as well as a hash of the initial
certificate chain. A more natural way of implementing this step would have been to send just a
single value equal to the MAC of both the view and the initial certificate chain. Namely, have,
say, the client, send MACck(client′s view | ch). This, however, prevents us from proving security
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based on standard assumptions2 and therefore we resulted to sending the hash of the certificate
separately.

Storing the cream file. For each server the client must store an entry which contains the cream
key ck, the client hash ch, and the oreo that the client received from the server. The client might
store additional information that could be useful for forensic examination in case that a CiTM
attack is identified, such as the time of the initial handshake and the certificate chain received in
it.

This data can be stored in a special “cream file”. This file is similar to a cookie file except
for one important difference: the contents of the cream file are never sent outside of the client,
except for the oreo data which is sent to the relevant server. Similar to a cookie file, the cream
file contains sensitive private information that reveals, for example, which sites were visited by the
user. Therefore it must be possible to apply to the cream file the same privacy controls as for
cookie files, for example the option of deleting entries for specific sites (at the cost of losing CiTM
protection for connections to these sites).

Changing to a new CA. The protocol does not prevent the server from having a new CA sign
its certificates (say, because that CA gives the owner of the server a better financial offer). Future
interactions with the client will be made using certificates signed by the new CA, but the oreo will
not change, and handshakes will be MACed using the original cream key ck, and will include the
hash of the certificate chain used in the initial client-server interaction.

Using existing TLS modes Following the initial handshake which establishes the cream key
ck, which then servers as a shared key between client and server, the protocol could be modified
in many ways. Two, perhaps interesting, variants are to use ck as the pre-shared-key in [8] (using,
say, the RSA-PSK key exchange) or as the password in [17].

Correctness. Let us state an easy and yet important claim about the well-functioning of the
protocol if no active attack is used.

Claim 2.1. If no change is made to the messages exchanged between the client and server, then
the new protocol provides the same functionality as the original handshake protocol.

Proof. If no changes are made to the messages then, in particular, the certificate chain sent by the
server is identical to the certificate chain received by the client, and therefore the server hash sh is
equal to the client hash ch. In addition, both parties have identical values for the key ck, and also
the MAC values received are equal to those that are sent. Therefore all checks made by the parties
are successful and the original protocol is allowed to run in its entirety.

2.2 Embedding the Protocol Data in Existing Protocols.

The new protocol requires sending additional fields between the client and server, namely sbit, oreo,
MAC and ch from the client to the server, and ck, oreo, MAC and sh from the server to the client.

2The problem is with the case of an adversary that controls the initial communication with the server. That
adversary can send the client an arbitrary MAC key ck and has to make sure that MACs computed with this key,
of the certificate chain that it sent, are equal to the MACs that the server expects to receive. This seems as a very
hard task, which is indeed impossible if we assume the MAC to be computed by a random oracle. However, the
security definition of MACs in the standard model assumes that the adversary has no information about the key that
is used, and this is not the case with this attack. Therefore we cannot prove the security of this protocol variant in
the standard model.
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The most straightforward way would have been to change existing protocols, such as TLS, in order
to support these new fields. However, changing TLS would be a lengthy process and it is preferable
to be able to communicate the new fields without changing the original protocol. This goal is aided
by the fact the new fields are not very long: if we assume a symmetric key to be 10-16 bytes long,
the output of H() to be 20 bytes long, and a MAC value to be 8-12 bytes long (shorter than a key,
since attacking it requires an online attack), then the length of the oreo would be 18-28 bytes, and
the length of the hash values ch, sh would be 20 bytes.

We describe here how the additional fields can be embedded over TLS messages. In particular,
we describe how superflous certificate and implicit sending of values, can be used to communication
the required information with minimal or no changes to the messages that are sent in the protocol.

Client to server communication. With regard to TLS, the oreo and ch value sent by the
client can be embedded in either the client-hello or client-finished messages. The MAC sent by the
client must be sent in the client-finished message, or after the handshake is over. The client-hello
message contains an “extra data” field which can be used for sending arbitrarily long data [3]. In
addition, the client-random field of the client-hello message contains a 28 byte long random string,
part of which can be used to send data. The client-finished message contains a client-certificate
field, which can be used in order to send a certificate that contains the MAC and the oreo (and
which does not need not be signed by a CA since it will be otherwise ignored by the server).

Superflous certificates. In the first handshake the server needs to send ck and the oreo to the
client in the server-hello or server-finished message. A natural solution is to embed these values
in a new field of a certificate sent by the server. An unfortunate disadvantage of this approach is
that CAs are known to charge significant amounts of money for adding new fields to certificates.
A workaround is to use “superflous certificates”, based on an undocumented feature of TLS.3 This
method works in the following way. The server server-hello message sent by the server contains
a set of certificates. Ideally these certificates should form a certificate chain to a CA trusted by
the client, but it is often the case that the server sends a set of certificates, only some of which
form this chain. (This happens, for example, if instead of removing old certificates the server just
adds new certificates to the set that it is sending to clients.) As a result, all major browsers accept
server-hello messages in which only a subset of the certificates sent by the server form a chain,
and the other certificates are superflous. Therefore, if in our protocol the server wishes to send
additional information to the client, it can encode this information in a new certificate and add it
to the certificate set sent to the client. It is not required to have this certificate signed by any CA
since the client will identify a different valid certificate chain leading to a trusted CA. Note that
the entire server-hello message is authenticated in the MAC sent in the server-finished message,
keyed by the key agreed upon in the handshake protocol (here we refer the MAC sent as part of
the TLS protocol, not the MAC in our protocol). Therefore an attacker cannot change this set of
certificates or add new ones. In effect, the result is that by using superflous certificates, servers can
add arbitrary authenticated information to TLS handshakes.

Using implicit MACs and hash values. The last steps of the protocol have each of the parties
send to the other party a MAC of its view and a hash of the initial certificate. The other party
checks these messages by computing its own version of these values and comparing it to the the

3See references to this method in http://www.ietf.org/mail-archive/web/tls/current/msg08820.html, http:
//tools.ietf.org/agenda/81/slides/tls-2.pdf, and http://code.google.com/p/certificate-transparency/

source/browse/src/client/ct.cc?r=103ff6cd41788fb51d37c3362632f639759ef4a7.
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values that it receives. Therefore, there is no need to send these values but only to make sure that
both parties agree on them. Note also that TLS already requires each party to send, as its last
message, a hash of all the messages it sent and received in the handshake protocol. These messages
are denoted in TLS as the client-finished/server-finished messages, respectively.

We can therefore make the following change to the protocol: the client (and similarly the server)
does not send the MAC and hash as required by our protocol but instead computes the last hash
in the client-finished message as if it has sent these values. The server, which knows which values
it expects to receive as the MAC and hash, uses these values to verify the client-finished message.
The effective result is that each party can verify that the other party could have sent the correct
MAC and hash values, but this is accomplished without sending any value expect for normal TLS
fields.

3 Security and Extensions

We show that the client can identify CiTM attacks as long as it runs a single uncompromised
handshake with the server. We also claim that although the server might not be explicitly warned
about these attacks, it is likely to have sufficient information to implicitly suspect the presence of
the attacks.

Intuitively, if the initial handshake is uncompromised then the client and server share the
cream key ck which is unknown to any attacker, and which is used for MACing future handshakes.
Therefore no active attack can be applied to a future handshake. If, on the hand, an attacker
mounts a successful CiTM attack on the initial handshake, and since we assume that the attacker
does not know the secret keys of the server, then the attacker must have used a certificate chain
different than any certificate chain used by the server. As a result, whenever the client performs a
handshake with the original server they do not agree on the hash values, and the client informs its
user about this discrepancy.

A note about the cream key ck. Our analysis here assumes that the cream key ck is sent
encrypted in the initial client-server handshake. As is discussed in Section 2.1, this value can be
sent either encrypted or unencrypted. The same analysis holds even if ck is sent unencrypted, as
long as we assume that the attacker does not eavesdrop on that initial handshake.

The claims about security are based on assuming that some connections are made over “un-
compromised channels”, which we now define.

Definition 3.1 (Uncompromised channel). A channel is uncompromised if an adversary can eaves-
drop on communication carried out over the channel but cannot change it. (Namely, the adversary
is only a passive eavesdropper.)

We first state and prove two claims about the client identifying CiTM attacks if it has an
uncompromised connection with the server.

Claim 3.1. Assuming that the cryptographic primitives used in the protocol are secure, then if the
initial client-server handshake is uncompromised, the client will identify any future CiTM attack.

Proof. (Sketch) Since the initial handshake was uncompromised, the client received in it certificate
chain and an oreo identical to the ones sent to it by the server, and therefore the client hash ch is
equal to the server hash sh, and the oreo contains valid encrypted and authenticated values of ck
and of sh.
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Consider what happens before the first active attack attempt by the adversary. The adversary
might have eavesdropped on the initial handshake and learned the certificate chain as well as an
encryption of ck and the encrypted and authenticated oreo. (These encryptions are done using
keys which are indistinguishable from random by the attacker.) The adversary might have also
eavesdropped on subsequent handshakes which contained copies of the same oreo, and MACs keyed
by ck. The adversary might have eavesdropped on communications of other clients, but these used
key values which were independent of those used by the attacked client, except for the oreos which
are all encrypted by the same server key sk. Standard cryptographic arguments can therefore
show that if the adversary can learn anything about the cream key ck then either the encryption
functions or the MAC are insecure. Since we assume these to be secure we conclude that the
adversary cannot distinguish ck from a random string.

Now, consider the first handshake in which the adversary aims to change any of the messages.
The adversary must send to the client a MAC of the new transcript of messages sent and received
by the client, keyed by ck. Since part of these messages contain randomness chosen by the client,
it holds with overwhelming probability that the transcript of messages in the current handshake is
not identical to any of the transcripts of previous handshakes. Therefore the adversary must forge
a MAC with a key it has no information about. A secure MAC algorithm ensures the adversary’s
failure, except with negligible probability.

As for CiTM attacks on the initial handshake, note that we need only consider attacks in which
the attacker sends a certificate chain different than the certificate chain sent by the server to the
client, since using a certificate chain of the original server requires the attacker to complete the
initial handshake with a MAC based on a key encrypted with the public key of the server, which
the attacker cannot decrypt. We are now ready to state our second claim.

Claim 3.2. If the initial handshake is compromised by a CiTM attack, and the attacker sends in
it a certificate chain that is different than the one used by the server, then the client will identify
the attack when it first connects to the server through an uncompromised channel.

Proof. (Sketch) The client receives an oreo from the attacker in the initial handshake. Then, in
the client’s first handshake with the real server it sends it this same oreo. The server checks the
authenticity of the oreo, and therefore aborts the protocol unless the oreo was generated by the
server itself. (It is possible that the oreo is not rejected, if the attacker sends to a client a valid
oreo that a different client received from the same server.) The oreo contains a server hash sh of a
certificate chain sent by the server. That certificate chain is different than the one received by the
client, and as a result sh is different than the client hash ch, since both are computed by applying a
collision intractable hash function to the certificate chain seen by the server and client, respectively.
The last step of the handshake requires the server to send sh to the client, which then compares it
to ch and aborts, since the two are different.

Attack identification by the server. In many cases it is sufficient to alert the client alone to
the fact that a CiTM is taking place, since, as in the DigiNotar case, clients can use alternative
communication channels to notify the rest of the world about the attack. Still, it is preferable to
let the server learn in realtime that an attack is taking place.

The server checks the MAC sent to it by the client at the end of the handshake, and this check
rejects any changes that an attacker injected into the messages. There is, however, an easy way
for the attacker to prevent the server from identifying the attack, by setting the sbit to 0 and
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pretending that this handshake is the first handshake made by the client. In this case the server
assumes that there is no oreo stored at the client, and it does not expect to receive a MAC at the
end of the handshake (and therefore the attacker can drop this MAC from the messages transferred
to the server).

This attack works in principle, but it should be possible for the server to use other signals in
order to identify that an attack is taking place. Normally, we can assume that clients will set the
sbit to 0 whenever they first connect to a server (say, when a user switches to a new web browser
and connects to a site it frequented in the past). However, this event should not happen too often.
The server could therefore gather relevant data and analyze it, perhaps using machine learning
techniques, in order to identify suspicious signals. These signals could include, for example, a large
percentage of users from the same physical location or country who all seem to be using a new
browser. Or a specific user who, in every new connection, seems to be connecting from a new
browser. Overall, we expect that large scale or persistant CiTM attacks will be identified by the
server as well as by the client.

3.1 Recovery of Server Keys

The basic protocol assumes that the server key sk is always accessible by the server and is never
learned by an attacker. The protocol states that once the client stores an entry for a server in its
cream file, it always expects to receive MACs from that server. Therefore, if the server loses its
server key sk and is unable to decrypt oreos, it will not be able to communicate with the client.
Furthermore, if sk becomes known to an adversary then that adversary will be able to compute
valid MACs on future handshakes and apply CiTM attacks.

An extension to the protocol must therefore enable the server to recover from losses or com-
promises of the server key sk. This functionality is supported using a “recovery key” prk. This
key is part of a public key-pair of secret/public keys (srk, prk) which are used for signining and
for signature verification, respectively. An important property is that the private key srk can be
easily kept offline until the time that it is needed (i.e., until the unlikely case that the server key
sk is lost or is compromised). The key srk can be stored disconnected from the network, or even
be stored in a non-electronic format, in order to minimize the chances of it being compromised.

The protocol is changed so that in the initial handshake the server sends the public key prk
to the client, which stores it in its cream file. Afterwards, the protocol continues as usual except
for the following change: the client sends an sbit equal to 1, but it agrees to receive server answers
corresponding to sbit = 0 if those answers and the entire handshake are signed with the secret key
srk corresponding to the key prk in the server’s entry in the cream file. Namely, the client accepts
a change of the handshake by the server to an initial client-server handshake, as long as this change
is signed by srk. Note that this feature can be used for periodic update of keys, as well as for
recovery from key compromise.

Acknowledgments: We would like to thank Úlfar Erlingsson, Adam Langley and Cem Paya for
valuable discussions.
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