
Side channels in cloud services, the case of
deduplication in cloud storage

Danny Harnik
IBM Haifa Research Lab
dannyh@il.ibm.com

Benny Pinkas
Bar Ilan University

benny@pinkas.net

Alexandra Shulman-Peleg
IBM Haifa Research Lab
shulmana@il.ibm.com

Abstract—Cloud storage services commonly use deduplication,
which eliminates redundant data by storing only a single copy of
each file or block. Deduplication reduces the space and bandwidth
requirements of data storage services, and is most effective
when applied across multiple users, a common practice by cloud
storage offerings.

We study the privacy implications of cross-user deduplication.
We demonstrate how deduplication can be used as a side channel
which reveals information about the contents of files of other
users. In a different scenario, deduplication can be used as a
covert channel by which malicious software can communicate
with its control center, regardless of any firewall settings at the
attacked machine.

Due to the high savings offered by cross-user deduplication,
cloud storage providers are unlikely to stop using this technology.
We therefore propose simple mechanisms that enable cross-user
deduplication while greatly reducing the risk of data leakage.

Keywords: Cloud storage, deduplication, side channels, dif-
ferential privacy.

1 INTRODUCTION

The fast growth of data volumes leads to an increased de-
mand for online storage services, ranging from simple backup
services to cloud storage infrastructures. Remote backup ser-
vices give users an online system for collecting, compressing,
encrypting, and transferring data to a backup server that is
provided by the hosting company. Cloud storage refers to
scalable and elastic storage capabilities that are delivered as
a service using Internet technologies with elastic provisioning
and use-based pricing that does not penalize users for changing
their storage consumption without notice [9], [1].

The term data deduplication refers to techniques that store
only a single copy of redundant data, and provide links to that
copy instead of storing other actual copies of this data.1 With
the transition of services from tape to disk, data deduplication
has become a key component in the backup process. By
storing and transmitting only a single copy of duplicate data,
deduplication offers savings of both disk space and network
bandwidth. For vendors, it offers secondary cost savings in
power and cooling achieved by reducing the number of disk
spindles [8]. According to recent statistics, deduplication is
considered to be the most-impactful storage technology and it

The work of Benny Pinkas was supported by the SFEROT project funded
by the European Research Council (ERC).

1Note that this does not refer to planned storage redundancy, such as RAID,
which is used for providing data durability, but rather to excess copies stored
by the users.

is estimated to be applied to 75% of all backups in the next
few years [8].

1.1 Approaches to Deduplication

Data deduplication strategies can be categorized according
to the basic data units they handle. In this respect there
are two main data deduplication strategies: (1) File-level
deduplication, in which only a single copy of each file is
stored. Two or more files are identified as identical if they
have the same hash value. This is a very popular type of
service offered in multiple products [5], [2]; (2) Block-level
deduplication, which segments files into blocks and stores
only a single copy of each block. The system could either use
fixed-sized blocks [7] or variable-sized chunks [6], [11]. The
discussion in this paper may be applied to both strategies.

In terms of the architecture of the deduplication solution,
there are two basic approaches. In the target-based approach
deduplication is handled by the target data-storage device or
service, while the client is unaware of any deduplication that
might occur. This technology improves storage utilization,
but does not save bandwidth. On the other hand, source-
based deduplication acts on the data at the client before it
is transferred. Specifically, the client software communicates
with the backup server (by sending hash signatures) to check
for the existence of files or blocks. Duplicates are replaced by
pointers and the actual duplicate data is never sent over the
network. The advantage of this approach is that it improves
both storage and bandwidth utilization.

The effectiveness of deduplication: The effectiveness of
deduplication depends on multiple factors such the type of
data, the retention period and the number of users. The
percentage of space reduction is calculated as 100% less the
inverse of the space reduction ratio, whereas, e.g., even a
deduplication ratio of 1:3 results in a 66% saving. Reported
deduplication ratios in common business settings range from
1:10 to 1:500, resulting in disk and bandwidth savings of more
90% [3]. These savings translate into huge financial savings
to the providers and users of cloud storage services.

1.2 Privacy Risks in Cloud Storage and Deduplication

There is an inherent risk in entrusting data in the storage
cloud, since the data owner is basically releasing control over
your data. Yet, in reality, a wide range of users and applications
are more than willing to hand over their data storage tasks to a

cloud provider. They put their trust in the integrity of the cloud
provider and in the security of the access control mechanisms
that it uses.

Setting these issues aside, we point out an additional threat
– the privacy implications of cross-user deduplication. We
demonstrate how deduplication in cloud storage services can
be used as a side channel which reveals information about
the contents of files of other users. In a different scenario,
deduplication can be used as a covert channel by which
malicious software can communicate with its command and
control center, regardless of any firewall settings at the attacked
machine.

We analyze these threats and propose a simple mechanism
that enables cross-user deduplication while greatly reducing
the risk of data leakage. More specifically, the proposed
method is a mechanism stating rules by which deduplication is
sometimes artificially turned off. We quantify the guarantees of
this simple practice. This gives clients a guarantee that adding
their data to the cloud has a very limited effect on what an
adversary may learn about this data. Thus, it is possible to
essentially ensure clients of the privacy of their data.

2 SECURITY ISSUES

The attacks we describe can be applied to deduplication that
is performed either at the file level or at the block level (to
be concrete, we assume from now on that deduplication is
performed at the file level). There are, however, two features
of the deduplication service that are crucial for the attacks:
• Source-based deduplication. That is, deduplication must

be performed at the client side. As mentioned above, this
version of deduplication saves bandwidth and is therefore
commonly used. The result of applying this approach is
that the client can observe whether a certain file or block
was deduplicated (or “deduped” in short). This can be
done by either examining the amount of data transferred
over the network, or by observing the log of the storage
software, if that software provides this type of report.

• The second feature which is crucial for the attack is
cross-user deduplication. That is, each file or block is
compared to the data of other users, and is deduped if
an identical copy is already available at the server. This
approach is popular since it saves storage and bandwidth
not only when a single user has multiple copies of the
same data, but also when different users store copies of
the data. (Enterprise clients often store multiple copies
of identical, or similar, data. We found out that this is
true even for private customers: almost every common
software manual or media file that we tried to backup
using popular backup services was found to be already
available on the servers and was therefore deduped. Note
that these are huge files and therefore deduplication offers
great savings to the service providers.)
Identifying storage providers susceptible to the attack:

We performed the following test to identify services that
perform source-based and cross-user deduplication (the test
can be repeated by any reader, on the storage service of his of

her choice): (1) We installed the client software of the service
on two different computers and created two different user
accounts; (2) We used one account to upload a file (in our tests
this file was Sun’s VirtualBox software of size almost 73M);
(3) We used the second account to upload the same file again,
checking whether it is indeed uploaded. When the file was not
re-transmitted over the network we concluded that the backup
service performed source-based, cross-user deduplication. (In
fact, when checking popular storage services there is no need
to use two accounts, since, as described above, any popular
file found on the web is likely to exist on the servers, as it
was previously uploaded by other users. Therefore the test can
consist of downloading a popular file from the web, uploading
it to the service and checking whether deduplication occurs.)

We identified services of three leading backup and file syn-
chronization providers that perform cross-user, source-based
deduplication. These services were (1) DropBox, a popular file
sharing and backup service which crossed the 3 million user
milestone;2 2) Mozy, which is a leading provider of online
backup for consumers and businesses, providing backup to
over one million customers and 50,000 business users, and
storing more than 25 petabytes;3 and (3) Memopal which was
ranked by Backup Review as the best online backup service in
Europe, with almost 1000 new subscribers per day4 Notably,
most vendors do not try to hide the fact that deduplication
occurred, and in our tests this fact was easily detected in
several simple ways: (1) Checking the history or the log file
(this approach works with MozyHome5); (2) According to the
upload status message, which differs between uploaded and
deduplicated files (this approach works with Memopal6); (3)
According to the upload speed, checking if an upload of a
file is finished within a time which is much shorter than the
time required by the upload bandwidth of the client machine
(this is the case with DropBox7); (4) Finally, the most generic
deduplication detection method, which is applicable to all the
services regardless of their interface, is to monitor network
traffic and measure the amount of transmitted data. We note
that most services have additional client-server communication
traffic, but it is negligible compared to the large volumes of
data transmitted when uploading large files.

When the requirements listed above are met, the storage
service essentially serves as an “oracle”, which provides an
answer to the following query: “Did any user previously
upload a copy of this file?” This query is answered by the

2http://www.geek.com/articles/news/dropbox-reaches-
3-million-user-milestone-20091126.

3Mozy press release, February 18, 2010,
http://mozy.com/news/releases/ comcast-launches-secure-
backup-share-online-storage-solution-for-its-internet-
customers.

4http://www.memopal.com/en/pressrelease/memopal-online-
backup-ranked-as-the-best-online-backup-serv.htm

5MozyHome, version 1.16.4.0 reports in the history tab that the file is
“already on Mozy servers”.

6Memopal, version 2.0.0, build 1326 highlights deduplicated files by
showing a message ”TurboUploaded” at the Status field at the Memopal
Control Panel.

7We ran these tests with DropBox version 0.7.110.

2

attacker asking to upload a copy of the file, and observing
whether deduplication occurs. Note that this is a rather limited
query: First, the answer is a yes/no answer which does not
detail who performed the upload of the file, or at what time.
Moreover, in the basic form of the attack the attacker can only
ask this query once – the query is asked by doing an upload
of the file; afterwards the file is stored at the upload service
and therefore the answer to the query will always be positive.

The latter limitation can be overcome by the following
strategy, suggested to us by Adi Shamir: The attacker begins
uploading a file, and observes whether deduplication occurs.
If deduplication does not happen, and a full upload begins,
then the attacker shuts down the communication channel and
terminates the upload. As a result, the copy of the file owned
by the attacker is not stored at the server. This enables the
attacker to repeat the same experiment at a later time, and
check again whether the file was uploaded. Furthermore, by
applying this procedure at regular intervals, the attacker can
find the time window in which the file is uploaded.

In the following sections we describe three attacks on online
storage services. The first two enable an attacker to learn about
the contents of files of other users, whereas the third attack
describes a new covert channel.

2.1 Attack I: Identifying Files

This first attack allows identifying whether a specific file,
known to the attacker, was previously uploaded to the storage
service.

Assume that there is an attacker, Alice, who wants to learn
information about Bob, a user of a cloud storage service.
Then obviously, if Alice suspects that Bob has some specific
sensitive file X which is unlikely to be at the possession of
any other user, she can use deduplication to check whether this
conjecture is true. All that Alice should do is try to backup a
copy of X and check whether deduplication occurs.

As a specific example, assume that there is a file proving
some illegal activity (e.g. a recording of a violent event,
or a file with some stolen sensitive information, or material
related to child pornography). Law enforcement authorities,
once getting hold of a copy of this file, can upload the file
to different cloud storage providers, and identify the storage
services which store copies of the file. They can then ask for
a court order that will require the service provider to reveal
the identities of users who uploaded the file. (If the file is
considered to be too sensitive to be uploaded for the purpose
of identifying the users who posses it, then, as described
above, the process of uploading the file by the authorities can
be terminated at its beginning, immediately after identifying
whether deduplication is applied to this file.)

2.2 Attack II: Learning the Contents of Files

The attack described above only allows to check whether a
specific file is stored in the cloud storage service. However,
the attacker might apply this attack to multiple versions of the
same file, essentially performing a brute force attack over all
possible values of the content of the file. Assume for example

that Alice and Bob work in the same company, which uses
a cloud backup service to backup the machines of all its
employees. Once a year, all employees receive a new copy of
a standard contract which contains their updated salary. Alice
is curious to find Bob’s new salary, which is most probably
some multiple of $500 in the range $50, 000− $200, 000. All
that Alice has to do is generate a template of Bob’s contract,
with Bob’s name and the date of the new contract, and then
generate a copy of the contract for each possible salary of Bob
(a total of 301 files). She then runs a backup to the company
backup service which she and Bob use. The single file for
which deduplication occurs is the one containing Bob’s actual
salary.

This attack can be applied whenever the number of pos-
sible versions of the target file is moderate. It seems very
relevant for a corporate environment where often files are
small variations of standard templates. Consider for example
the following three examples:

• An online banking service sends its customers a docu-
ment containing their login name and their PIN, which
is a 4 digit number. Alice can therefore generate 10, 000
documents with the login name “Bob” and all possible
values of the PIN, and check which of these files has
already been stored. This document corresponds to Bob’s
actual PIN. The same attack can be applied to arbitrary
passwords if they are taken from a moderately sized
domain. Note that unlike online dictionary attacks, the
attacked banking service does not notice that someone is
trying all potential passwords of a certain user.

• Suppose that a file detailing the results of some medical
test of Bob is stored on his computer. Alice can use
this attack to find the result of the test, which usually
comes from a small domain (e.g., it is a yes/no answer
for the occurrence of a genetic disease or for the result
of a pregnancy test, or comes from a range of, say, a
hundred likely values for a cholesterol test). The name
of the referring physician, and the date of the referral,
might be known to Alice or are likely to come from a
small domain. Even the serial number of the test, if such
a number exists, might be guessed by Alice if she has an
example of a result of a test taken on a similar date.

• Suppose that both Alice and Bob participate in an auction,
which requires bidders to submit their bids on some
standard form containing their names and their bid (this
is actually a common practice in many auctions and
procurement processes). If Alice can speculate on, say,
the 10, 000 most likely bid values of Bob, she can use
the same attack to find Bob’s actual bid and then set her
bid accordingly.

2.3 Attack III: A Covert Channel

Suppose that Alice managed to install some malicious
software on Bob’s machine. Bob, however, runs a firewall
which prevents unauthorized programs from connecting to the
outside world. Even if such a firewall is not running, Alice

3

might want to hide the communication between the malicious
software and its command and control server).

If Bob is using an online storage service which uses cross-
user deduplication, then Alice can use the deduplication attack
to establish a covert channel from the malicious software to a
remote control center run by her. (The existence of a covert
channel might be a second-order attack, and there might also
be other ways of establishing a covert channel. Still, it is
interesting to examine how a covert channel can be established
by exploiting cross-user deduplication.)

Let us first describe how a single bit can be transferred: The
software generates one of two versions of a file, X0 or X1, and
saves it on Bob’s machine. If it wants to transfer the message
“0” then it saves the file X0; otherwise it saves the file X1.
The files must be sufficiently random so that it is unlikely that
any other user generates identical files. At some point in time
(say, daily) Bob runs a backup and stores the file on the online
storage service. Alice then performs a backup with the same
service as Bob, and learns which of the files, X0 or X1, was
previously stored, i.e., she learns what message was sent by
the software.

The covert channel can be used to transfer arbitrarily long
messages by having the software save more than a single file,
and using more than two options for the contents of each file.
A detailed performance analysis of this method is beyond the
scope of this article.

We described here how the malicious software can send
messages to its command and control center. The same
technique can be used for sending messages in the opposite
direction, if it is possible for the malicious software to examine
the log files of backups and observe when deduplication takes
place.

3 SOLUTIONS

Deduplication offers great savings to the providers of cloud
storage services, and these savings translate to lower fees to
the users of these services. On the other hand, deduplication
introduces new security risks. Considering simple solutions
that try to address these risks, one may try to limit the
number of uploads permitted for a user per time window.
While this approach may damage the experience of regular
users, which have limited network connectivity, it does not
prevent malicious users from writing scripts that repeat their
attacks between the specified time windows. Developing more
advanced solutions that try to model the user behavior identify-
ing suspicious uploads is also not straightforward. Especially,
since in the above described deduplication attacks the user
does not have to fully upload the file and can abort the
transmission in the middle, simulating network failures.

Below, we describe several practical solutions to the security
risks of deduplication. The first solutions essentially prevent
deduplication from taking place, and might therefore be un-
acceptable. The latter ones enable the usage of deduplication
while limiting the scope of the security risks. The cost of
applying any solution might be substantial. Assume, for ex-
ample, that a basic deduplication approach saves 95% of the

communication costs, and that deploying a certain solution
reduces the saving to 93%. As a result, the communication
costs are increased by 40% (from 5% to 7% of the raw
communication overhead).

3.1 Using Encryption to Stop Deduplication

A simple solution to the risks described above is, of course,
to stop using cross-user deduplication. Clients of cloud storage
services can do so, regardless of the service they use, by
encrypting their data before the local client software of the
storage service operates on their files. (We stress that this
encryption must be done with a personal key of the user,
rather than by using a global key which is shared by all users
of the system. Otherwise deduplication will still be possible,
since, if the encryption function is deterministic, as is typically
the case, the encrypted file is a deterministic function of the
original file and of the encryption key. Therefore identical files
result in identical encrypted versions of the file, which can still
be deduplicated.)

When we tested the encryption options of the service
providers that we examined, we identified several interesting
observations. First, the default configuration lets the service
itself, rather than the user, generate the encryption keys. When
this option is used, it enables deduplication of copies of the
same file uploaded by different users. This suggests that either
the data is decrypted when it arrives at the servers, or that all
files are encrypted with the same key. An alternative solution
is to allow users to encrypt their data with their own private
keys. Among the three services that we examined, the only
service that currently supports this option is MozyHome8.
The option of using personal encryption keys is costly to the
service providers, not only because it prevents the usage of
deduplication, but also due to potential complications caused
by key management issues (e.g., supporting users who lose
their keys).

It is interesting to note that the usage of a personal key
is susceptible to offline dictionary attacks against that key.
The attack is based on the observation (which holds for
the personal key option of the MozyHome service) that if
two users choose the same key then deduplication is applied
between identical files stored by these two users. Suppose
now that Alice knows that (1) Bob’s key comes from some
relatively small domain, and (2) a certain file was definitely
uploaded by Bob, and by him alone. Then Alice can try to
upload copies of this file encrypted with each possible value
of Bob’s key, and identify the right value of the key as the one
for which deduplication occurs. This is a powerful dictionary
attack which is very hard to identify by the attacked service.

8The Mozy service offers two methods of data encryption: 448-bit Blowfish
encryption using a Mozy key, 256-bit AES encryption using the user’s own
private key. The latter option does not enable cross-user deduplication and
therefore our analysis refers only to encryption with a key supplied by Mozy.
This is the default option, and users who choose to use their own keys are
shown several warning messages before this choice is applied. Furthermore,
there is no option to allow a user who chose during initial setup to use a
Mozy key, to change the setting later to usage of a private key.

4

The attack described above demonstrates that the usage of
personal keys for encrypting data which might be dedupli-
cated, is very sensitive to the usage of weak keys. Another
related vulnerability is the following: Suppose that Alice
somehow knows the personal key used by Bob (perhaps Bob,
as many typical users, uses the same key or password for
many different services, and Alice managed to get hold of
the key through one of these services). Then by using the
deduplication based attacks described above Alice can now
identify whether a particular file was uploaded by Bob, rather
than whether the file was uploaded by some user. This is done
by Alice choosing to use the same personal key as Bob, and
uploading a copy of the file.

It is also worth mentioning earlier research on deduplication
of encrypted files that resulted in the notion of “convergent en-
cryption”, which produces identical ciphertexts from identical
plaintext files, even if the files are encrypted using different
keys [2]. (Each file is essentially encrypted using a key which
is a hash of the contents of the file.) The goal of that work
was to enable deduplication of encrypted files and it was later
followed up by a work allowing deduplication of encrypted
data chunks [10]. In the context of our examination the usage
of convergent encryption does not solve the security risks since
users are still able to identify the occurrence of deduplication.

3.2 Performing Deduplication at the Servers

It is possible to prevent clients from identifying the occur-
rence of deduplication by changing the backup software so
that files are always uploaded, and the deduplication process
is run at the servers (this is the target-based approach to
deduplication). A major drawback of this approach is that it
eliminates all bandwidth savings of deduplication, and that
the service provider and/or the users must pay for transferring
the raw amount of data. In order to estimate the cost of this
solution we compared the pricing of the Amazon S3 service
for data storage and transfer. As of the end of June 2010, the
cost of transferring 1GB of data was between 157% to 216%
of the cost of storing this data for a month (this comparison
was done for each service tier offered by this service). This
pricing suggests that cost of transferring data is about the same
as the cost of storing it for 1.5-2 months.

An interesting tradeoff between bandwidth and privacy was
introduced in MozyHome, after we notified them about the
attacks described in this paper. In the current version of
that system (as of June 2010), files of relatively small size
are always uploaded, and source-based deduplication is only
applied to larger files. This solution would be useful whenever
the following two properties hold: (1) sensitive data is typically
stored in small files (for which source-based deduplication is
not applied), while there is almost no sensitive data related
to large files; and (2) most of the bandwidth is consumed by
uploading large files, and therefore the cost of uploading all
copies of small files is tolerable.

Fig. 1. A Randomized solution. The figure details the operations performed
upon the client backup request. For every file the server keeps a random
threshold (Tx). If the number of existing copies of the document (Cx) is at
least as high as the threshold, then client side deduplication is performed and
the file content are not sent over the network. Otherwise, deduplication is
performed only at the server side.

3.3 A Randomized Solution

The security risks of deduplication stem from the fact that
deduplication of a file occurs if, and only of, this file was
previously uploaded to the storage service. The risks can be
reduced by weakening the correlation between deduplication
and the existence of files in the storage service. This is done
by assigning a random threshold for every file, and performing
deduplication only if the number of copies of the file exceeds
this threshold.

Before examining this solution in more detail, it is instruc-
tive to examine a similar approach, which is insecure: Here,
the server sets a global threshold t (say, t = 10), and performs
deduplication of a file only if at least t copies of the file were
uploaded. In this case, indeed, uploading a single copy of
the file by Alice does not reveal whether Bob has previously
uploaded this file. However, Alice can upload many copies
of the file (even using multiple user identities), and check
whether deduplication occurs after t, or t − 1, copies of the
file are uploaded by her. The latter case indicates that a copy
of the file was previously uploaded by a different user. (We
can safely assume that Alice knows the threshold t, since she
can conduct simple experiments to reveal the value of t.)

The solution: Let us now describe the randomized
solution in more detail. For every file X , the storage server
assigns a threshold tX chosen uniformly at random in a range
[2, d], where d is a parameter which might be public. (For
example, assume that d = 20.) It is important that no one
except for the server can compute tX , even if the contents
of X are known. One way of achieving this property is
by the server choosing tX at random and storing this value
privately. Another method is the server using a secret key s,
and computing the threshold as a function of the contents of
the file, or of its hash value, and of the secret key s. Namely,
computing tX = F (X, s). In this case there is no need to
explicitly store the threshold of X since the server can easily
recompute it.

Now, for every file X the server keeps a counter cX of the
number of clients which have previously uploaded copies of
X . When a new copy of the file is uploaded, it is deduped
at the client side if one of the following two conditions
hold: (1) cX ≥ tX , or (2) the copy is uploaded by a client
that has previously uploaded X . Otherwise no deduplication
occurs. Note that the minimal number of copies for which
deduplication can occur is 2, since it is impossible to perform

5

deduplication when the first copy of the file is uploaded.
This solution hides the occurrence of deduplication from

users during the first tX − 1 times that X is uploaded, since
the file is uploaded as if no copy of it is available at the
server. However, once the data is transferred to the server
side deduplication can be preformed. Thus, the overall disk
space savings offered by this solution are exactly as in the
basic deduplication scheme. The only penalty paid is that the
bandwidth utilization is smaller, since (tX−1)·X more copies
of the file are uploaded, compared to a plain deduplication
solution. Figure1 illustrates the proposed solution and its data
flow.

Handling deletions: File deletions must also be ad-
dressed. When a deletion occurs it seems natural to decrement
the counter cX of the number of copies of the file. This setting,
however, enables the following attack: Alice uploads copies of
the file X and notices that deduplication occurs after t copies
are uploaded. She then repeatedly removes two copies of X
from the online storage, and again uploads these two copies.
If in one of these tests she notices that deduplication happens
after only one of the two copies is uploaded, then it must
be the case that some other user has just uploaded a copy of
X . Similarly, if deduplication happens after uploading three,
rather than two, copies of X , then another user must have
removed a copy of this file.

This attack is not very practical, since online storage ser-
vices typically retain copies of deleted files for some period
of time after their deletion. For example, the policy of most
services, including Mozy, DropBox, and Memopal, is to retain
files for at least 30 days after their removal. Therefore, each
iteration of the attack would take at least 30 days to execute.

A simple solution to the attack is the following amended
policy: After the counter cX reaches the threshold tX , dedu-
plication is always performed, regardless of whether deletions
have occurred. The drawback of this solution is that dedupli-
cation must be performed even after all copies of the file are
deleted. This means that once the number of copies reaches
the threshold the server must keep a copy of the file even if is
deleted. The implication of this policy in practice might not be
too costly, since (1) copies of deleted files are already being
retained for long periods of time, and (2) the policy is applied
to relatively popular files, which have been uploaded at least
tX times, and therefore it is less likely that all copies of these
files will be deleted.

Security: The randomized solution described above still
enables an attacker to distinguish between the case that the
file X has been uploaded by d users, and the case that no
user uploaded X . Yet this sort of information tells about the
popularity of the file but is unlikely to tell anything about any
specific user, and therefore it is probably less important to
protect against the release of this information.

We would like to show that the solution does not reveal too
much information about the inclusion of any file X in the data
stored by the server. In order to analyze security we compare
the views of the attacker in two instances: one where the file X
was already uploaded by another user, and one where no copy

of X has previously been uploaded. Distinguishing between
these two cases seems to be the most relevant for breaching
the privacy of any single user. If we ensure that it is hard
to distinguish between these two cases, then each user can
be assured that uploading its copy of the file does not make a
substantial difference to the view of the attacker, and therefore
cannot be detected by it. Indeed, such a measure is used in the
notion of differential privacy (see [4] and references within),
which considers privacy issues in statistical queries to large
databases.

To analyze privacy, we consider three types of events in the
setting where the attacker wants to identify whether a (single)
copy of a document was uploaded.

1) If the attacker uploads a single copy of X and finds out
that deduplication occurs, then it immediately learns that
tX = 2 and that a copy of X was previously uploaded
by another user.

2) If, on the other hand, the attacker must upload d copies
of X , under different identities, before deduplication
occurs, then it must be the case that tX = d and that no
copy of X was previously uploaded.

3) If deduplication happens after the attacker uploads 2 <
t < d copies of X , then this could be due to one of
two events: (a) A copy of X was previously uploaded,
and the threshold is tX = t + 1. (b) No copy of X was
previously uploaded, and the threshold is tX = t. In
any case, the probability that tX was set to either t or
t+1 is exactly 1/(d−1) and is independent of whether
X was uploaded or not. It is easy to show now that
the probability that X was previously uploaded, given
the event that deduplication occurred after uploading t
copies (where 2 < t < d), is equal to the a-priori
probability that X was previously uploaded. In other
words, the occurrence of deduplication does not add any
information about whether X was uploaded to the server
or not.

Observe that if X was previously uploaded then the first event,
which leaks information, happens with probability 1/(d − 1)
whereas the third event, which does not leak any information,
happens with probability 1 − 1

d−1 . If X was not previously
uploaded then the second event happens with probability
1/(d − 1) whereas the third event happens with probability
1 − 1

d−1 . Since for any file only one of the two conditions
holds, we get the following theorem:

Theorem 1: For a fraction of 1 − 1
d−1 of the files, the

solution described above leaks no information which enables
an attacker to distinguish between the case the a single copy
of a file was previously uploaded, and the case that the file
was not previously uploaded.

It is worthwhile to mention some enhancements of this basic
result, as well as some notes about its performance:

• A similar analysis can be applied to find an upper bound
on the probability with which the attacker can distinguish
between the occurrence of c copies, and c′ copies, of X ,
for any values of 1 ≤ c < c′ ≤ d. Security is better when

6

c′ − c is smaller.
• The cost of the solution is the following: As long as less

than tX copies of the files are uploaded, source-based
deduplication does not occur. Namely, there are tX − 1
unnecessary uploads of the file. Given statistics on the
distribution of the number of copies of files, it is possible
to compute the expected cost of the solution.
The threshold tX is chosen in the range [2, d]. Therefore
if popular files have many more than d copies, then the
expected cost is small compared to the benefit of using
deduplication. A larger value of d results in a higher cost,
but also provides better security since the probability of
distinguishing whether a copy of X is present is at most
1/(d− 1).

• Theorem 1 gives a result with an “all or nothing” flavor:
it shows that for all but 1

d−1 of the files no information
is leaked, whereas for the remaining files, where the
threshold is set to either tX = 2 or tX = d, the
attacker can distinguish whether a copy of the file has
been uploaded.

• It is possible to choose the threshold according to different
distributions (other than the uniform distribution). The
goal is to minimize the cost while maximizing security.

• Security against Attack III (covert channel to/from a
malicious software) is a bit trickier. The reason is that the
malicious software can place d copies of a file rather than
one, and thus ensure that deduplication will always take
place for this file. The randomized solution overcomes
this issue by counting all copies of a file uploaded by
a single user as one. In other words, the counter cX is
taken to be the number of users that hold file X . Dedup
within a single user always occurs, while across users it
occurs only if cX ≥ tX . Under such rules, the analysis
of the covert channel case is similar to that of the other
attacks.

4 SUMMARY AND CONCLUSIONS

In this article we pointed out the potential risks of cross-user
source based-deduplication. We described how such deduplica-
tion can be used as a side channel to reveal information about
the contents of files of other users, and as a covert channel by
which malicious software can communicate with the outside
world, regardless the firewall settings of the attacked machine.

Since deduplication offers substantial savings in both disk
capacity and network bandwidth, we suggested and analyzed
a mechanism that provides higher privacy guarantees while
slightly reducing bandwidth savings.

Future work includes a more rigorous analysis of the
privacy guarantees provided by our mechanism and a study
of alternative solutions that maximize privacy while having
minimal influence on deduplication efficiency. Furthermore,
our observations give motivation to an evaluation of the risks
induced by other deduplication technologies, and of cross-user
technologies in general. The goal must be to ensure clients that
their data remains private, by showing that uploading their data

to the cloud has a limited effect on what an adversary may
learn about them.

5 ACKNOWLEDGMENTS

The work of the second author was supported by the
European Research Council (ERC) as part of the ERC project
SFEROT. The authors would like to thank Adi Shamir and
Dalit Naor for their useful suggestions.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Sto-
ica, and M. Zaharia, “Above the clouds: A berkeley view
of cloud computing,” EECS Department, University of Califor-
nia, Berkeley, Tech. Rep. UCB/EECS-2009-28, February 2009,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html.

[2] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” Distributed Computing Systems, International Conference on,
vol. 0, p. 617, 2002.

[3] M. Dutch and L. Freeman, Understanding data
de-duplication ratios, SNIA, February 2009,
http://www.snia.org/forums/dmf/news/articles/SNIA DeDupe Ratio Feb09.pdf.

[4] C. Dwork, “Differential privacy: a survey of results,” in TAMC’08: Pro-
ceedings of the 5th international conference on Theory and applications
of models of computation. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 1–19.

[5] H. S. Gunawi, N. Agrawal, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, and J. Schindler, “Deconstructing commodity storage clusters,”
in ISCA ’05: Proceedings of the 32nd annual international symposium
on Computer Architecture. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 60–71.

[6] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” in Symposium on Operating Systems Principles,
2001, pp. 174–187. [Online]. Available: http://citeseer.ist.psu.edu/
muthitacharoen01lowbandwidth.html

[7] S. Quinlan and S. Dorward, “Venti: a new approach to archival
storage,” in First USENIX conference on File and Storage Technologies,
Monterey,CA, 2002. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.18.8085

[8] D. Russell, Data Deduplication Will Be Even Bigger in 2010, Gartner,
February 2010.

[9] A. W. C. Stanley Zaffos, “Cloud storage: Benefits, risks and cost
considerations,” Gartner, April 2009.

[10] M. W. Storer, K. M. Greenan, D. D. E. Long, and E. L. Miller, “Secure
data deduplication,” in StorageSS, 2008, pp. 1–10.

[11] L. L. You, K. T. Pollack, and D. D. E. Long, “Deep store: An archival
storage system architecture,” in In Proceedings of the 21st International
Conference on Data Engineering (ICDE 05. IEEE, 2005, pp. 804–815.

7

